Статистика в сервисе находится 8 машин , которым лет : 1; 4; 4; 5; 7; 9; 9; 9 определить наборы данных а) модули б) медиана в) средняя арифметическое г) амплитуда
мне нужно решение. ответы; а) mo=9 б) me =6 в) х(стрелка наверху ) =6 г) r=8
Пусть цифры данного числа х,у, z, t 1000x+100y+10z+t-1000t-100z-10y-x=909 999x+90y-90z-999t=909 поделим обе части равенства на 9 и сгруппируем 111(x-t)-10(z-y)=101 Это возможно, когда x-t=1, z-y=1 x=t+1, z=y+1 По условию сумма цифр числа делится на 9, т.е. x+y+z+t=9n, n - некоторое натуральное число t+1+y+y+1+t=9n 2(t+y+1)=9n, значит n=2, t+y=8 Переберем все цифры, сумма которых равна 8, зная зависимость переменных z и x от t и y , получим набор чисел
x y z t 8 1 2 7 7 2 3 6 6 3 4 5 5 4 5 4 4 5 6 3 3 6 7 2 2 7 8 1 9 0 1 8 Итого 8 чисел удовлетворяют условию задачи
а) 1/12 и 1/35 = 35/420 и 12/420
12=2*2*3 35=5*7 НОК (12 и 35) = 12 * 35 = 420
420 : 12 = 35 - доп.множ. к 1/12 = (1*35)/(12*35) = 35/420
420 : 35 = 12 - доп.множ. к 1/35 = (1*12)(35*12) = 12/420
б) 17/96 и 41/72 = 51/288 и 164/288
96=2*2*2*2*2*3 72=2*2*2*3*3 НОК(96и72)=2*2*2*2*2*3*3=288
288 : 96 = 3 - доп.множ. к 17/96 = (17*3)/(96*3) = 51/288
288 : 72 = 4 - доп.множ. к 41/72 = (41*4)/(72*4) = 164/288
в) 5/56 и 17/29 = 145/1624 и 952/1624
56*29=1624 - наименьший общий знаменатель число)
1624 : 56 = 29 - доп.множ. к 5/56 = (5*29)/(56*29) = 145/1624
1624 : 29 = 56 - доп.множ. к 17/29 = (17*56)/(29*56) = 952/1624
г) 5/17 и 9/13 = 65/221 и 153/221
17*13=221-наименьший общий знаменатель (17и числа)
221 : 17 = 13 - доп.множ. к 5/17 = (5*13)/(17*13) = 65/221
221 : 13 = 17 - доп.множ. к 9/13 = (9*17)/(13*17) = 153/221
там ещё ест другие дроби
1000x+100y+10z+t-1000t-100z-10y-x=909
999x+90y-90z-999t=909 поделим обе части равенства на 9 и сгруппируем
111(x-t)-10(z-y)=101 Это возможно, когда x-t=1, z-y=1
x=t+1, z=y+1
По условию сумма цифр числа делится на 9, т.е. x+y+z+t=9n, n - некоторое натуральное число
t+1+y+y+1+t=9n
2(t+y+1)=9n, значит n=2, t+y=8
Переберем все цифры, сумма которых равна 8, зная зависимость переменных z и x от t и y , получим набор чисел
x y z t
8 1 2 7
7 2 3 6
6 3 4 5
5 4 5 4
4 5 6 3
3 6 7 2
2 7 8 1
9 0 1 8
Итого 8 чисел удовлетворяют условию задачи