Алгоритмический подход к решению геометрических задач. Вероятность получения положительной отметки при написании тестовой контрольной работы путем угадывания правильного ответа. Виды уравнений и их решения. Вписанные и описанные окружности. Вневписанные окружности. График дробно-линейной функции. Загадки арифметической прогрессии. Замечательные точки треугольника. Золотое сечение Информация, кибернетика и математика. Иррациональные неравенства. Иррациональные уравнения. Использование тригонометрических формул при измерительных работах История развития учения об уравнениях. Летопись открытий в мире чисел и фигур. Математика – царица или слуга для других наук. Метод подобия в задачах на построение. Методы решения текстовых задач. Методы решения уравнений 4 степени. Можно ли считать мир геометрически правильным.
Предположим, что у нас есть функция (график этой функции – это парабола) и необходимо построить график функции . Вычислим значения некоторых точек для графиков этих функций.
Из таблиц видно, что одним и тем же значениям аргумента соответствуют противоположные значения функций. Графически это означает, что графики расположены симметрично относительно оси абсцисс. То есть заданная парабола () зеркально отобразится относительно оси (см. Рис. 1).
Рис. 1. Графики функций и
Таким образом, если у нас есть произвольный график , то для построения графика необходимо график симметрично отразить относительно оси (см. Рис. 2). Такое преобразование называется преобразованием симметрии относительно оси .
Рис. 2. Преобразование симметрии относительно оси
Преобразование симметрии – зеркальное отражение относительно прямой. График получается из графика функции преобразованием симметрии относительно оси .
На рисунке 3 показаны примеры симметрии относительно оси .
Вероятность получения положительной отметки при написании тестовой контрольной работы путем угадывания правильного ответа.
Виды уравнений и их решения.
Вписанные и описанные окружности. Вневписанные окружности.
График дробно-линейной функции.
Загадки арифметической прогрессии.
Замечательные точки треугольника.
Золотое сечение
Информация, кибернетика и математика.
Иррациональные неравенства.
Иррациональные уравнения.
Использование тригонометрических формул при измерительных работах
История развития учения об уравнениях.
Летопись открытий в мире чисел и фигур.
Математика – царица или слуга для других наук.
Метод подобия в задачах на построение.
Методы решения текстовых задач.
Методы решения уравнений 4 степени.
Можно ли считать мир геометрически правильным.
Предположим, что у нас есть функция (график этой функции – это парабола) и необходимо построить график функции . Вычислим значения некоторых точек для графиков этих функций.
Из таблиц видно, что одним и тем же значениям аргумента соответствуют противоположные значения функций. Графически это означает, что графики расположены симметрично относительно оси абсцисс. То есть заданная парабола () зеркально отобразится относительно оси (см. Рис. 1).
Рис. 1. Графики функций и
Таким образом, если у нас есть произвольный график , то для построения графика необходимо график симметрично отразить относительно оси (см. Рис. 2). Такое преобразование называется преобразованием симметрии относительно оси .
Рис. 2. Преобразование симметрии относительно оси
Преобразование симметрии – зеркальное отражение относительно прямой. График получается из графика функции преобразованием симметрии относительно оси .
На рисунке 3 показаны примеры симметрии относительно оси .
Рис. 3. Симметрия относительно оси Ox