А) Чтобы число делилось на 2, надо, чтобы оно было чётным. х и у любые чётные, например 1) (2; 2) 17·2 - 9·2 = 34 - 18 = 16; 2) (6; 2) 17·6 - 9·2 = 102 - 18 =84; б) Чтобы число делилось на 5, надо, чтобы оно оканчивалось на 5 или на 0 1) (0; 5) 17·0 - 9· 5 = - 45; 2)( 5; 5) 17·5 - 9· 5 = 85 - 45 = 40; в) Чтобы число делилось на 10, надо, чтобы оно оканчивалось нулём. ( 17х и 9у должны оканчиваться одинаковыми цифрами) Например 1) (6; 8) 17·6 - 9·8 = 102 - 72 = 30 2) (10; 20) 17·10 - 9·10 = 170 - 90 = 80.
Вообще, как составить функцию, обратную данной?
Любая функция записывается с букв "у" и "х"
"у" - это функция, "х" - это аргумент. Так вот. Надо найти х(у) . Она и будет обратной по отношению к данной.
Смотрим.
1) у = 0,5х +3
0,5х = у -3
х = 2у -6
Только в ответ запишем у = 2х -6 (чтобы "у" было функцией, "х" - аргументом. )
2) у = 2/(х -3)
у(х -3) = 2
ух -3у = 2
ух = 2 +3у
х =(2+3у)/у
Только в ответ запишем у =(2+3х)/х (чтобы "у" было функцией, "х" - аргументом. )
3) у = (х +2)³
х +2 = ∛у
х = -2 + ∛у
Только в ответ запишем у = -2 + ∛х
4) у = х³ -1
х³ = у +1
х = ∛(у +1)
Только в ответ запишем у = ∛(х +1)
17·2 - 9·2 = 34 - 18 = 16;
2) (6; 2)
17·6 - 9·2 = 102 - 18 =84;
б) Чтобы число делилось на 5, надо, чтобы оно оканчивалось на 5 или на 0
1) (0; 5)
17·0 - 9· 5 = - 45;
2)( 5; 5)
17·5 - 9· 5 = 85 - 45 = 40;
в) Чтобы число делилось на 10, надо, чтобы оно оканчивалось нулём.
( 17х и 9у должны оканчиваться одинаковыми цифрами)
Например 1) (6; 8)
17·6 - 9·8 = 102 - 72 = 30
2) (10; 20)
17·10 - 9·10 = 170 - 90 = 80.