стороны треугольника abc равны ab 9 bc 11 ca 10 на стороне ac отмечена такая точка E, что периметр треугольника abe на два больше периметра треугольника bce. Найдите ce
Пусть первое число равно х, причём 0<x<12, тогда второе число (12-х), т.к. по условию, сумма чисел равна 12. Составляем функцию от х : f(x)=x³*2*(12-x)=2x³(12-x)=24x³-2x⁴ Находим производную функции: f`(x)=24*3x²-2*4x³=72x²-8x³=8x²(9-x) Находим наибольшее значение функции: f`(x)=0 при 8x²(9-x) =0 х=0 (не подходит, т.к. х - неотрицательное, по условию) 9-х=0 => х=9 + - 0912 max Итак, х=9 - первое слагаемое , 12-х =12-9=3 - второе слагаемое ответ: 9 и 3
Пусть первое число равно х, причём 0<x<12, тогда второе число (12-х), т.к. по условию, сумма чисел равна 12. Составляем функцию от х : f(x)=x³*2*(12-x)=2x³(12-x)=24x³-2x⁴ Находим производную функции: f`(x)=24*3x²-2*4x³=72x²-8x³=8x²(9-x) Находим наибольшее значение функции: f`(x)=0 при 8x²(9-x) =0 х=0 (не подходит, т.к. х - неотрицательное, по условию) 9-х=0 => х=9 + - 0912 max Итак, х=9 - первое слагаемое , 12-х =12-9=3 - второе слагаемое ответ: 9 и 3
тогда второе число (12-х), т.к. по условию, сумма чисел равна 12.
Составляем функцию от х :
f(x)=x³*2*(12-x)=2x³(12-x)=24x³-2x⁴
Находим производную функции:
f`(x)=24*3x²-2*4x³=72x²-8x³=8x²(9-x)
Находим наибольшее значение функции:
f`(x)=0 при 8x²(9-x) =0
х=0 (не подходит, т.к. х - неотрицательное, по условию)
9-х=0 => х=9
+ -
0912
max
Итак, х=9 - первое слагаемое ,
12-х =12-9=3 - второе слагаемое
ответ: 9 и 3
тогда второе число (12-х), т.к. по условию, сумма чисел равна 12.
Составляем функцию от х :
f(x)=x³*2*(12-x)=2x³(12-x)=24x³-2x⁴
Находим производную функции:
f`(x)=24*3x²-2*4x³=72x²-8x³=8x²(9-x)
Находим наибольшее значение функции:
f`(x)=0 при 8x²(9-x) =0
х=0 (не подходит, т.к. х - неотрицательное, по условию)
9-х=0 => х=9
+ -
0912
max
Итак, х=9 - первое слагаемое ,
12-х =12-9=3 - второе слагаемое
ответ: 9 и 3