Пусть х₁=12+k, x₂=12-k Подставим корни в уравнение и решим систему. Первое уравнение системы (12+k-6a)²+(12+k-2a)²=128 Второе уравнение системы (12-k-6a)²+(12-k-2a)²=128 Вычитаем из первого уравнения второе: (12+k-6a)²+(12+k-2a)²- (12-k-6a)²-(12-k-2a)²=0 Группируем первое со третьим, второе с четвертым и раскладываем на множители по формуле разности квадратов: (12+k-6a-12+k+6a)(12+k-6a+12-k-6a) + (12+k-2a-12+k+2a)(12+k-2a+12-k-2a)=0 2k(24-12a)+2k(24-4a)=0 2k·(24-12a+24-4a)=0 2k(48-16a)=0 k=0 или 48-16а=0 ⇒ 16а=48 ⇒а=3
a) сумма наибольшего четырехзначного числа и наибольшего пятизначного числа:
наибольшее четырехзначное число = 9999
наибольшее пятизначное число = 99999
9999 + 99999 = 109998
б) сумма наименьшего четырехзначного числа и наибольшего шестизначного числа:
наименьшее четырехзначное число = 1000
наибольшее шестизначное число = 999999
1000 + 999999 = 1000999
в) разность наименьшего шестизначного числа и наибольшего трёхзначного числа:
наименьшее шестизначное число = 100000
наибольшее трёхзначное число = 999
100000 - 999 = 99001
Подставим корни в уравнение и решим систему.
Первое уравнение системы
(12+k-6a)²+(12+k-2a)²=128
Второе уравнение системы
(12-k-6a)²+(12-k-2a)²=128
Вычитаем из первого уравнения второе:
(12+k-6a)²+(12+k-2a)²- (12-k-6a)²-(12-k-2a)²=0
Группируем первое со третьим, второе с четвертым
и раскладываем на множители по формуле разности квадратов:
(12+k-6a-12+k+6a)(12+k-6a+12-k-6a) + (12+k-2a-12+k+2a)(12+k-2a+12-k-2a)=0
2k(24-12a)+2k(24-4a)=0
2k·(24-12a+24-4a)=0
2k(48-16a)=0
k=0 или 48-16а=0 ⇒ 16а=48 ⇒а=3