Строитель укладывает стену (см. рисунок) из коричневого и чёрного кирпичей. какое наибольшее число коричневых кирпичей может быть в такой стене, если строитель хочет, чтобы каждый коричневый кирпич граничил ровно с двумя коричневыми?
1. Поскольку из условия задачи нам известно, что обще число рабочих составляет 200 человек, следовательно при случайном выборе рабочего может попасться любой, а значит существует 200 разных исходов в данной ситуации.
2. А поскольку из условия задачи также известно, что норму не выполняют 15 из них, следовательно вариантов, удовлетворяющих требуемому условию 15. Вычислим какова вероятность того, что один случайно выбранный рабочий не выполняет норму.
р = 15 / 200 = 0,075.
3. А теперь вычислим вероятность того, что 2 случайно выбранных рабочих не выполняют норму.
Пусть a2, a3, a4, a5 - члены арифметической прогрессии, а d - её разность. По условию, 3*a2+a4=16. А так как a2=a1+d и a4=a1+3*d, то это уравнение можно переписать в виде: 3*a1+3*d+a1+3*d=16, или 4*a1+6*d=16, или 2*a1+3*d=8. И так как a3=a1+2*d и a5=a1+4*d, то P=a3*a5=(a1+2*d)*(a1+4*d)=a1²+6*a1*d+8*d². Из уравнения 2*a1+3*d=8 находим a1=4-3/2*d. Подставляя это выражение в выражение для P, получаем P как функцию аргумента d: P(d)=(4-3/2*d)²+6*(4-3/2*d)*d+8*d²=5/4*d²+12*d+16=5/4*(d+24/5)²-64/5. Отсюда находим d+24/5=0 и d=-24/5.
1. Поскольку из условия задачи нам известно, что обще число рабочих составляет 200 человек, следовательно при случайном выборе рабочего может попасться любой, а значит существует 200 разных исходов в данной ситуации.
2. А поскольку из условия задачи также известно, что норму не выполняют 15 из них, следовательно вариантов, удовлетворяющих требуемому условию 15. Вычислим какова вероятность того, что один случайно выбранный рабочий не выполняет норму.
р = 15 / 200 = 0,075.
3. А теперь вычислим вероятность того, что 2 случайно выбранных рабочих не выполняют норму.
р = 0,075 * 0,075 = 0,005625.
ответ: при d=-24/5.
Пошаговое объяснение:
Пусть a2, a3, a4, a5 - члены арифметической прогрессии, а d - её разность. По условию, 3*a2+a4=16. А так как a2=a1+d и a4=a1+3*d, то это уравнение можно переписать в виде: 3*a1+3*d+a1+3*d=16, или 4*a1+6*d=16, или 2*a1+3*d=8. И так как a3=a1+2*d и a5=a1+4*d, то P=a3*a5=(a1+2*d)*(a1+4*d)=a1²+6*a1*d+8*d². Из уравнения 2*a1+3*d=8 находим a1=4-3/2*d. Подставляя это выражение в выражение для P, получаем P как функцию аргумента d: P(d)=(4-3/2*d)²+6*(4-3/2*d)*d+8*d²=5/4*d²+12*d+16=5/4*(d+24/5)²-64/5. Отсюда находим d+24/5=0 и d=-24/5.