Структурно-смысловая сравнительная таблица Задание 81
. Заполните в тетради таблицу, основываясь на критерии сравнения. Найдите при-
знаки, характерные для разных стилей речи, поставьте знаки “+” и “-” в соответ-
ствующих графах таблицы.
. Найдите и приведите примеры из текста, которые иллюстрируют обозначенные
вами критерии.
тиль,
учные
сение
ъвая
Критерии
Собствен-
но-науч-
ный
Научно-
популяр-
ный
Художест-
венный
ами,
да и
Абстрактность и отвлеченность
Образность и эмоциональность
Доступность и занимательность
Цветовая гамма пейзажной картины
Обилие терминов и сложных предлогов
Эпитеты, сравнения и олицетворения
Преобладание общеупотребительных слов
Сравнения, основанные на реальных сходствах
Причастные обороты и союзные слова
Однородные определения и сказуемые
Отглагольные существительные и глагольные
словосочетания
3 ч 45 мин = 3 ч 45/60 мин = 3 3/4 часа
Пусть х - время, за которое папа поклеил бы обои, работая в одиночку.
Тогда х+4 - время, за которое мама поклеила бы обои, работая в одиночку.
1) 1х : 3 3/4 = 1 : 15/4 = 4/15 - производительность папы и мамы при совместной работе.
2) 1:х = 1/х - производительность одного пары.
3) 1 : (х+4) = 1/(х+4) - производительность одной мамы.
4) уравнение:
1/х + 1/(х+4) = 4/15
Умножим обе части уравнения на 15х(х+4):
15(х+4) + 15х = 4х(х+4)
15х + 60 + 15х = 4х^2 + 16х
4х^2 + 16х - 15х -15х -60 = 0
4х^2 - 14х - 60 = 0
Сократим уравнение на 2:
2х^2 -7х - 30 = 0
Дискриминант:
(-7)^2 + 4•2•30 = 49 +240 = 289
Корень из дискриминанта = корень их 289 = 17
х1 = (7+17)/(2•2) = 24/4=6 часов - время, за которое папа один поклеил бы обои.
х2 = (7-17)/(2•2) = -10/4 = -2,5 часов - не подходит.
ответ: 6 часов.
Проверка:
1) 6+4=10 часов - время, за которое мама поклеили бы обои одна.
2) 1:6=1/6 - производительность папы.
3) 1:10=1/10 - производительность мамы.
4) 1/6 + 1/10 = 5/30 + 3/30 = 8/30 = 4/15 - производительность мамы и папы при совместной работе.
5) 1 : 4/15 = 15/4 часа = 3 3/4 часа - 3 часа 45 мин - время за которое папа и мама поклеят обои, работая вместе.
Заметим, что если из вершины сот выходит отрезок вертикально вниз, то пчёлке остаётся идти по нему, не задумываясь. Выбор встаёт перед ней, когда из вершины выходят два наклонных отрезка.
Чтобы спуститься из верхней точки в нижнюю, пчёлке в любом случае надо будет пройти через восемь наклонных отрезков; из них непременно 5 отрезков вниз — налево, 3 отрезка вниз — направо.
Заметим, что 3 спуска направо могут быть расставлены среди восьми наклонных отрезков как угодно, хоть все подряд. ответ на задачу равен количеству выбрать из восьми проходимых наклонных отрезков 3 отрезка, направленных направо.
Правильный ответ: 56 варианта(-ов).