Имеются брёвна по 4 и по 5 м. Сколько брёвен каждого вида надо распилить, чтобы получить 42 бревна по 1 м и сделать наименьшее число распилов ?
4n+5k=42, k - должно быть четным , иначе 4n+5k - нечетное,
4n должно оканчиваться на 2 (12, 32, 52, 72..), т.к. надо получить 42 бревна по 1 м ⇒4n может быть (12, 32). Тогда 5k должно , быть...(30, 10 ), соответственно.
если 4n=12 ⇒n=3 5k=30 ⇒k=6 число распилов n-1+(k-1)=7
если 4n=32 ⇒n=8 5k=2 ⇒k=6 число распилов n-1+(k-1)=8
сравниваем, получаем:
3 4х метровых бревна и 6 5ти метровых бревна надо распилить, чтобы получить 42 бревна по 1 м и сделать наименьшее число распилов.
Для соответствия Г=(X, Y, G) определить набор свойств, которыми обладает данное соответствие: X = R, Y - функции, непрерывные на [0, 1], G = (m, f(x)|minf(x) = m). То есть соответствие состоит из пар (число, функция), причём пара есть не для любого числа и функции, а только если это число является минимумом функции.
Я думаю так:
1) всюду определённость не выполняется (так как не любое число является минимумом функции);
2) сюръективность не выполняется (так как не для каждой функции можно найти минимум);
3) функциональность не выполняется (так как одно число может быть минимумом более чем для одной функции);
4) инъективность выполняется (так как функция имеет только один минимум).
4n+5k=42, k - должно быть четным , иначе 4n+5k - нечетное,
4n должно оканчиваться на 2 (12, 32, 52, 72..), т.к. надо получить 42 бревна по 1 м ⇒4n может быть (12, 32). Тогда
5k должно , быть...(30, 10 ), соответственно.
если
4n=12 ⇒n=3 5k=30 ⇒k=6 число распилов n-1+(k-1)=7
если
4n=32 ⇒n=8 5k=2 ⇒k=6 число распилов n-1+(k-1)=8
сравниваем, получаем:
3 4х метровых бревна и 6 5ти метровых бревна надо распилить, чтобы получить 42 бревна по 1 м и сделать наименьшее число распилов.
4n=12 ⇒n=3 5k=30 ⇒k=6 число распилов n-1+(k-1)=7
Пошаговое объяснение:
Для соответствия Г=(X, Y, G) определить набор свойств, которыми обладает данное соответствие: X = R, Y - функции, непрерывные на [0, 1], G = (m, f(x)|minf(x) = m). То есть соответствие состоит из пар (число, функция), причём пара есть не для любого числа и функции, а только если это число является минимумом функции.
Я думаю так:
1) всюду определённость не выполняется (так как не любое число является минимумом функции);
2) сюръективность не выполняется (так как не для каждой функции можно найти минимум);
3) функциональность не выполняется (так как одно число может быть минимумом более чем для одной функции);
4) инъективность выполняется (так как функция имеет только один минимум).