1. Если как в условии считать, что разные буквы заменяют разные нечётные числа, то получается бесконечное количество решений. Для доказательства положим
Д=2·k+1, Р=2·k+3, З=2·k+5, О=2·k+7, где k=0, 1, 2, ...
2. Если считать, что разные буквы заменяют разные нечётные цифры, то получается 5 решений.
Количество нечётных цифр всего 5: 1, 3, 5, 7, 9. Получаем следующие решения:
В алгебраической форме оно уже записано.
(Комплексное число, записанное в алгебраической форме - это число вида z=x+iy)
Комплексное число, записанное в тригонометрической форме - это число вида z=r(cos(Ф) +isin(Ф).
Ищем модуль комплексного числа r=√(x^2+y^2)=√1/3+1=2/√3
Ищем аргумент комплексного числа Ф=arctg(√3)=pi/3
Отсюда: z=2/√3(cos(pi/3)+isin(pi/3) - запись заданного комплексного числа, занисанного в тригонометрической форме.
Не ясно, корни какого уравнения искать? изи пизи!
Пошаговое объяснение:
Бесконечно много или 5
Пошаговое объяснение:
Перепишем ребус:
О>Р>Д
О>З>Д
1. Если как в условии считать, что разные буквы заменяют разные нечётные числа, то получается бесконечное количество решений. Для доказательства положим
Д=2·k+1, Р=2·k+3, З=2·k+5, О=2·k+7, где k=0, 1, 2, ...
2. Если считать, что разные буквы заменяют разные нечётные цифры, то получается 5 решений.
Количество нечётных цифр всего 5: 1, 3, 5, 7, 9. Получаем следующие решения:
1) 9>7>3
9>5>3
2) 9>7>1
9>5>1
3) 9>7>1
9>3>1
4) 9>5>1
9>3>1
5) 7>5>1
7>3>1