Во-первых, это задача просто о ладьях, а не о реальной партии. На доске можно поставить и пуговицы, только договориться, что каждая бьет как ладья, по горизонтали и по вертикали. Поэтому их может быть сколько угодно, хоть все 64. Ладья бьет ладьи, которые стоят с ней на одной вертикали или горизонтали, но только ближайшие. Максимум ладья может бить 4 ладьи. Например, d5 бьет d1, d8, a5, e5. Но, если поставить ладьи d4 и c5, то d5 уже не будет бить d1 и a5. Минимум, естественно равен 0. Например, если 8 ладей стоят на одной диагонали a1 - h8 или a8 - h1, то каждая не бьет ни одной ладьи. Найдем наибольший из таких минимумов. Пусть на доске стоит несколько ладей. Найдем самый левый столбец, содержащий ладью. В этом столбце найдем самую верхнюю. Слева и сверху от нее ладей нет, поэтому она бьет максимум 2 ладьи - одна снизу и одна справа. Например, ладья a6 бьет a5 и d6. Точно также, найдем самую верхнюю строку, содержащую ладью. В этой строке найдем самую левую. Например, ладья b8 бьет b6 и d8. Таким образом, наибольший из минимумов m = 2.
1) Первый явно солгал, потому что перед ним вообще никого нет. Значит, он или лжец, или конформист. Если он конформист, то сосед сзади него (2-ой) сказал правду. Значит, 2-ой не лжец. Но конформист не мог соврать, если его сосед не лжец. Значит, 1-ый лжец. Тогда 2-ой соврал. Значит, 2-ой или лжец, или конформист. 1) Пусть 2-ой лжец. Тогда и 3-ий тоже соврал. Значит, он тоже лжец. И так далее, получаем, что они все лжецы. Но это нам не подходит. 2) Пусть 2-ой конформист и он соврал, тогда 3-ий сказал правду. 2-ой конформист мог соврать, т.к. у него 1-ый сосед - лжец. Значит, 3-ий рыцарь или конформист, который сказал правду. 3) Если 3-ий конформист, то 4-ый сказал правду. Значит, 4-ый рыцарь. Так мы получаем рыцарей на одного меньше, чем могли бы. 4) Если 3-ий рыцарь, то 4-ый соврал. При этом, если 4-ый лжец, то и 5-ый соврал. А если 4-ый конформист, то 5-ый сказал правду и он не лжец. Но тогда 4-ый конформист не мог соврать, т.к. у него нет соседа лжеца. Значит, 4-ый все-таки лжец, тогда 5-ый конформист, а 6 рыцарь. В итоге мы получаем, что рыцари - каждый третий: 3, 6, 9, 12, 15. Всего максимум 5 рыцарей.
2. Мне кажется, достаточно 4 ящиков, в каждом по 25 карточек, идущих через 4. То есть: 1 ящик: 1, 5, 9, 13, 17, 21, ..., 97 2 ящик: 2, 6, 10, 14, 18, 22, ..., 98 3 ящик: 3, 7, 11, 15, 19, 23, ..., 99 4 ящик: 4, 8, 12, 16, 20, 24, ..., 100
На доске можно поставить и пуговицы, только договориться, что каждая бьет как ладья, по горизонтали и по вертикали.
Поэтому их может быть сколько угодно, хоть все 64.
Ладья бьет ладьи, которые стоят с ней на одной вертикали или горизонтали, но только ближайшие.
Максимум ладья может бить 4 ладьи. Например, d5 бьет d1, d8, a5, e5.
Но, если поставить ладьи d4 и c5, то d5 уже не будет бить d1 и a5.
Минимум, естественно равен 0. Например, если 8 ладей стоят на одной диагонали a1 - h8 или a8 - h1, то каждая не бьет ни одной ладьи.
Найдем наибольший из таких минимумов.
Пусть на доске стоит несколько ладей.
Найдем самый левый столбец, содержащий ладью.
В этом столбце найдем самую верхнюю.
Слева и сверху от нее ладей нет, поэтому она бьет максимум 2 ладьи - одна снизу и одна справа.
Например, ладья a6 бьет a5 и d6.
Точно также, найдем самую верхнюю строку, содержащую ладью.
В этой строке найдем самую левую.
Например, ладья b8 бьет b6 и d8.
Таким образом, наибольший из минимумов m = 2.
Значит, он или лжец, или конформист. Если он конформист, то сосед сзади него (2-ой) сказал правду. Значит, 2-ой не лжец. Но конформист не мог соврать, если его сосед не лжец. Значит, 1-ый лжец.
Тогда 2-ой соврал. Значит, 2-ой или лжец, или конформист.
1) Пусть 2-ой лжец. Тогда и 3-ий тоже соврал. Значит, он тоже лжец.
И так далее, получаем, что они все лжецы. Но это нам не подходит.
2) Пусть 2-ой конформист и он соврал, тогда 3-ий сказал правду.
2-ой конформист мог соврать, т.к. у него 1-ый сосед - лжец.
Значит, 3-ий рыцарь или конформист, который сказал правду.
3) Если 3-ий конформист, то 4-ый сказал правду. Значит, 4-ый рыцарь.
Так мы получаем рыцарей на одного меньше, чем могли бы.
4) Если 3-ий рыцарь, то 4-ый соврал. При этом, если 4-ый лжец, то и 5-ый соврал. А если 4-ый конформист, то 5-ый сказал правду и он не лжец.
Но тогда 4-ый конформист не мог соврать, т.к. у него нет соседа лжеца.
Значит, 4-ый все-таки лжец, тогда 5-ый конформист, а 6 рыцарь.
В итоге мы получаем, что рыцари - каждый третий: 3, 6, 9, 12, 15.
Всего максимум 5 рыцарей.
2. Мне кажется, достаточно 4 ящиков, в каждом по 25 карточек,
идущих через 4. То есть:
1 ящик: 1, 5, 9, 13, 17, 21, ..., 97
2 ящик: 2, 6, 10, 14, 18, 22, ..., 98
3 ящик: 3, 7, 11, 15, 19, 23, ..., 99
4 ящик: 4, 8, 12, 16, 20, 24, ..., 100