Для решения этого примера воспользуемся условными переменными "Х" и "У", через которые обозначим стоимость одного пакта молока и одной пачки творога соответственно.
На основании данных примера формируем следующую систему уравнений:
1) 2Х + У = 38;
2) Х + 2У = 40.
Решая систему уравнений с двумя неизвестными, получаем Х = 40 - 2У.
Вставив Х в первое уравнение, получаем 2 х (40 - 2У) + У = 38 или 80 - 4У + У = 38 или 80 - 3У = 38 или 3У = 80 - 38 = 42 или У = 42 / 3 = 14 рублей.
Следовательно, Х = 40 - 2 х 14 = 40 - 28 = 12 рублей.
ответ: один пакет молока стоит 12 рублей, а одна пачка творога стоит 14 рублей.
№1. а) АВО и СDO равны (они накрест лежащие при параллельных прямых АВ и CD и секущей BD ), аналогично относительно углов BAO и DCO (накр. леж. при параллельных прямых AB и CD и секущей АС) . Таким образом, треугольники АОВ и СОD подобны (по двум углам) , а у подобных треугольников соответствующие стороны пропорциональны. Значит АО: ОС=ВО: OD б) итак, у подобных треугольников АОВ и СОD (а их подобие доказано под "а") соответствующие стороны пропорциональны. ТО есть ОD:ОВ=СD:АВ отсюда АВ= (ОВ*СD) / ОD = (9*25)/15 = 15 (см)
Для решения этого примера воспользуемся условными переменными "Х" и "У", через которые обозначим стоимость одного пакта молока и одной пачки творога соответственно.
На основании данных примера формируем следующую систему уравнений:
1) 2Х + У = 38;
2) Х + 2У = 40.
Решая систему уравнений с двумя неизвестными, получаем Х = 40 - 2У.
Вставив Х в первое уравнение, получаем 2 х (40 - 2У) + У = 38 или 80 - 4У + У = 38 или 80 - 3У = 38 или 3У = 80 - 38 = 42 или У = 42 / 3 = 14 рублей.
Следовательно, Х = 40 - 2 х 14 = 40 - 28 = 12 рублей.
ответ: один пакет молока стоит 12 рублей, а одна пачка творога стоит 14 рублей.
б) итак, у подобных треугольников АОВ и СОD (а их подобие доказано под "а") соответствующие стороны пропорциональны. ТО есть ОD:ОВ=СD:АВ отсюда АВ= (ОВ*СD) / ОD = (9*25)/15 = 15 (см)