тіло рухається прямолінійно зі швидкістю, що змінюється за законом v(t) = (3t^2 + 1) м/с, де t - час руху. знайдіть шлях (у метрах), який пройде тіло за 3 с від початку руху?
Дано:АВСД-трапеция, ∠А=90°, ВС=9 см, АВ=18 см, ∠Д=45°.
Найти: S АВСД.
Проведём СМ⊥АД.
АВСМ- прямоугольник,т.к. ВС║АМ по свойству оснований трапеции, СМ║АВ по свойству двух перпендикуляров, проведённых к одной прямой, ∠А=90° по условию; ⇒ СМ=АВ=18 см и АМ=ВС=9 см.
ΔСМД: ∠М=90°т.к. СМ⊥МД по построению, ∠Д=45° -по условию,
∠МСД=90°-45°=45° ⇒ΔСМД -равнобедренный по признаку и МД=СМ=18 см.
АД=АМ+МД=9+18=27 (см).
S АВСД= (ВС+АМ):2*СМ=(9+27):2*18=36:2*18=18*18=324 (см²).
Дана функция y = 2x/(x² + 1.
Функция нечетная.
Условия для точек разрыва : x² + 1 = 0, x² = -1.
Точки разрыва : нет.
Корни функции (точки пересечения с осью абсцисс x) : x = 0.
Вычисление y′ : y′=2⋅1(x²+1)−x(2x)(x²+1)2=2⋅1−x²(x²+1)2=−2(x−1)(x+1)(x2+1)2
Первая производная : y′=−2(x−1)(x+1)/(x²+1)²
Условия для стационарных точек : −2(x−1)(x+1)=0
Стационарные точки : х1=−1, х2=1
Вторая производная : y′′=4x(x²−3)/(x²+1)³
Условия для критических точек : 4x(x²−3)=0
Критические точки : х1=−√3, х2=√3, х3=0
Асимптота на обоих ±∞ линия y=0.
ответ: 324 см².
Пошаговое объяснение:
Дано:АВСД-трапеция, ∠А=90°, ВС=9 см, АВ=18 см, ∠Д=45°.
Найти: S АВСД.
Проведём СМ⊥АД.
АВСМ- прямоугольник,т.к. ВС║АМ по свойству оснований трапеции, СМ║АВ по свойству двух перпендикуляров, проведённых к одной прямой, ∠А=90° по условию; ⇒ СМ=АВ=18 см и АМ=ВС=9 см.
ΔСМД: ∠М=90°т.к. СМ⊥МД по построению, ∠Д=45° -по условию,
∠МСД=90°-45°=45° ⇒ΔСМД -равнобедренный по признаку и МД=СМ=18 см.
АД=АМ+МД=9+18=27 (см).
S АВСД= (ВС+АМ):2*СМ=(9+27):2*18=36:2*18=18*18=324 (см²).