Трехзначных чисел всего (100 - 999) = 900 штук. Из них хоть одну четверку содержат: 1) A B 4 (Здесь A ≠ 0 и 4, а B ≠ 4). А - 8 вариантов, B - 9 вариантов. n1 = 8 * 9 = 72 варианта. 2) C 4 D (C ≠ 0 и 4, а D ≠ 4) C - 8 Вариантов, D - 9 вариантов. n2 = 8*9 = 72 варианта. 3) 4 X Y (X и Y ≠ 4) X и Y - 9 вариантов. n3=9*9 = 81 вариант. 4) 4 A 4 (A ≠ 4) - 9 вариантов 5) A 4 4 (A ≠ 0 и 4) - 8 вариантов 6) 4 4 A - 10 вариантов По правилу суммы общее число вариантов: n = 72 + 72 + 81 + 9 + 8 + 10 = 252 варианта. p = 252 / 900 = 0,28
Из них хоть одну четверку содержат:
1) A B 4 (Здесь A ≠ 0 и 4, а B ≠ 4). А - 8 вариантов, B - 9 вариантов. n1 = 8 * 9 = 72 варианта.
2) C 4 D (C ≠ 0 и 4, а D ≠ 4) C - 8 Вариантов, D - 9 вариантов. n2 = 8*9 = 72 варианта.
3) 4 X Y (X и Y ≠ 4) X и Y - 9 вариантов. n3=9*9 = 81 вариант.
4) 4 A 4 (A ≠ 4) - 9 вариантов
5) A 4 4 (A ≠ 0 и 4) - 8 вариантов
6) 4 4 A - 10 вариантов
По правилу суммы общее число вариантов: n = 72 + 72 + 81 + 9 + 8 + 10 = 252 варианта.
p = 252 / 900 = 0,28
2. Решите уравнение:
а) 2,6х – 0,75 = 0,9х – 35,6
б) 3,4+0,65=0,9х-25,6
3. Постройте треугольник МКР, если М (-3,5), К (3,0), Р (0,-5).
4. Путешественник в первый день всего пути, во второй день всего пути. Какой путь путешественник во второй день, если в первый он км?
5. В двузначном натуральном числе сумма цифр равна 13. Число десятков на 3 больше числа единиц. Найдите это число.
Пошаговое объяснение:
2. Решите уравнение:
а) 2,6х – 0,75 = 0,9х – 35,6
б) 3,4+0,65=0,9х-25,6
3. Постройте треугольник МКР, если М (-3,5), К (3,0), Р (0,-5).
4. Путешественник в первый день всего пути, во второй день всего пути. Какой путь путешественник во второй день, если в первый он км?
5. В двузначном натуральном числе сумма цифр равна 13. Число десятков на 3 больше числа единиц. Найдите это число.