Тапсырма – 2.
Суретте бір тәулікте ауа температураның өзгеруі көрсетілген
График бойынша келесі сұрақтарға жауап беріңіз:
а) сағат 4, 14, 22 ауа температурасы қандай болған?
б) сағат нешеде ауа температурасы 0°С: 5 °C: -3 °C тең
болған?
в) ауа температурасы уақыттың қандай аралықтарында
төмендеді немесе жоғарлады?
г) ауа температурасы уақыттың қандай аралықтарында
он немесе теріс таңбалы мәнді болған?
Механическая работа. Мощность
Механическая работа
Если действующая на тело сила F вызывает его перемещение s, то действие этой силы характеризуется величиной, называемой механической работой (или, сокращенно, просто работой) .
Механической работой А называют скалярную величину, равную произведению модуля силы F, действующей на тело, и модуля перемещения s, совершаемого телом в направлении действия этой силы, т. е.
А=Fs. (3.9)
рисунок 30
В случае, описываемом формулой (3.9), направление перемещения тела совпадает с направлением силы. Однако чаще встречаются случаи, когда сила и перемещение составляют между собой угол, не равный нулю или p. (рис. 30)
Разложим силу F на две взаимно перпендикулярные составляющие F1 и F2 (F=F1+F2). Поскольку механическая работа - величина скалярная, то работа силы F равна алгебраической сумме работ сил F1 и F2, т. е. А=А1+А2.
Под действием силы F2 тело перемещения не совершает, так как F2^s. Поэтому A2=0. Следовательно, работа А=А1=F1s. Из рисунка видно, что F1=Fcosa. Поэтому
А=Fsсоsa. (3.10)
Таким образом, в общем случае механическая работа равна произведению модуля силы и модуля перемещения на косинус угла между направлениями силы и перемещения. Работа силы, направленной вдоль перемещения тела, положительна, а силы, направленной против перемещения тела, - отрицательна. По формулам (3.9) и (3.10) вычисляют работу постоянной силы. Единицу механической работы устанавливают из формулы (3.9). В СИ за единицу работы принята работа силы 1 Н при перемещении точки ее приложения на 1 м. Эта единица имеет наименование джоуль (Дж) :
1 Дж = 1Н·1м.
http://www.edu.yar.ru/russian/projects/socnav/prep/phis001/soh/sohran17.html
Удачи!
Пошаговое объяснение:
Этот небольшой урок позволит не только освоить типовую задачу, которая довольно часто встречается на практике, но и закрепить материалы статьи Разложение функций в степенные ряды. Нам потребуется таблица разложений функций в степенные ряды, которую можно раздобыть на странице Математические формулы и таблицы. Кроме того, читатель должен понимать геометрический смысл определенного интеграла и обладать элементарными навыками интегрирования.
На уроке Определенный интеграл. Как вычислить площадь фигуры? речь шла о том, что определенный интеграл – это площадь. Но в некоторых случаях интеграл является очень трудным или неберущимся, поэтому соответствующую площадь в большинстве случаев можно вычислить только приближенно.
Например: вычислить определенный интеграл . Такой интеграл является неберущимся, но аналитически и геометрически всё хорошо:
Приближенное вычисление определенного интеграла с разложения подынтегральной функции в ряд
Мы видим, что подынтегральная функция непрерывна на отрезке , а значит, площадь существует, и определенный интеграл численно равен заштрихованной площади. Беда только в том, что данную площадь можно вычислить лишь приближенно с определенной точностью. На основании вышеизложенных фактов и появилась типовая задача курса высшей математики.
Пример 1
Вычислить приближенно определенный интеграл, предварительно разложив подынтегральную функцию в ряд Маклорена, с точностью до 0,001
Решение: Идея метода состоит в том, чтобы заменить подынтегральную функцию соответствующим степенным рядом (если он, конечно, сходится к ней на промежутке интегрирования).
Поэтому на первом этапе нужно разложить подынтегральную функцию в ряд Маклорена. Эту рас на практике задачу мы очень подробно рассмотрели на уроке Разложение функций в степенные ряды. Кстати, рекомендую всем прочитать, поскольку некоторые вещи, о которых сейчас пойдет разговор, могут показаться малопонятными.
Используем табличное разложение:
В данном случае
Обратите внимание, как я записал ряд. Специфика рассматриваемого задания требует записывать только несколько первых членов ряда. Мы не пишем общий член ряда , он здесь ни к чему.
Чем больше членов ряда мы рассматриваем – тем лучше будет точность. Сколько слагаемых рассматривать? Из практики могу сказать, что в большинстве случаев для достижения точности 0,001 достаточно записать первые 4 члена ряда. Иногда требуется меньше. А иногда больше. Если в практическом примере их не хватило, то придётся переписывать всё заново =( Поэтому целесообразно провести предварительный черновой анализ или перестраховаться, изначально записав побольше членов (собственно, такой же совет как и для приближенного вычисления значения функции с ряда).
Следует также отметить, что точность до трёх знаков после запятой самая популярная. Также в ходу и другая точность вычислений, обычно 0,01 или 0,0001.
Теперь второй этап решения:
Сначала меняем подынтегральную функцию на полученный степенной ряд:
Почему это вообще можно сделать? Данный факт пояснялся ещё на уроке о разложении функций в степенные ряды – график бесконечного многочлена в точности совпадает с графиком функции ! Причем, в данном случае утверждение справедливо для любого значения «икс», а не только для отрезка интегрования .
На следующем шаге максимально упрощаем каждое слагаемое:
Лучше это сделать сразу, чтобы на следующем шаге не путаться с лишними вычислениями.
После упрощений почленно интегрируем всю начинку – напоминаю, что эта замечательная возможность обусловлена равномерной сходимостью степенных рядов:
Интегралы здесь на этом я не останавливаюсь.
На завершающем этапе вспоминаем школьную формулу Ньютона-Лейбница . Для тех, кто не смог устоять перед Ньютоном и Лейбницем, есть урок Определенные интегралы. Примеры решений.
Техника вычислений стандартна: сначала подставляем в каждое слагаемое 0,3, а затем ноль. Для вычислений используем калькулятор:
Сколько членов ряда нужно взять для окончательных вычислений? Если сходящийся ряд знакочередуется, то абсолютная погрешность вычислений по модулю не превосходит последнего отброшенного члена ряда. В нашем случае уже третий член ряда меньше требуемой точности 0,001, и поэтому если мы его отбросим, то заведомо ошибёмся не более чем на 0,000972 (осознайте, почему!). Таким образом, для окончательного расчёта достаточно первых двух членов: .
ответ: , с точностью до 0,001
Что это получилось за число с геометрической точки зрения? – это приблизительная площадь заштрихованной фигуры (см. рисунок выше).
Пример 2
Вычислить приближенно определенный интеберущимся, правда, решение не самое