В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
андрейка41
андрейка41
27.04.2020 01:38 •  Математика

Татарский язык сделать морфологический разбор слов берсе, икеу, икевенапример: бер- сан, тамыр сан, макъдар саны, саналмышы шехеренде сузе, жомлэдэ аергыч​

Показать ответ
Ответ:
катя123461
катя123461
23.03.2020 14:04
Можно взять все гирьки, кроме 1 и 2. Их общий вес по сумме геом прогрессии 5047.
Как это сделать:
1) У нас есть гирьки с весами 1, 2, 3, ..., N.
2) Научимся убирать гирьку самого большого веса: берем гирьки веса 1 и N - 1 - на одну чашу весов, N - на другую. Забираем самую тяжелую.
3) Отсаются гири с весами 1, 2, 3, ..., N-1. Т.е. задача сводится к предыдущей.

Почему нельзя больше:
Заметим, что на витрине остается не менее одной гирьки. В нашем случае это гирька весом 3.
Предположим, что можно оставить более легкую гирьку и расмотрим последнее взвешивание:
1) Пусть на витрине осталась гирька весом 1.
Так могло произойти, если мы взвесили гирьку 1 на одной чаше весов. Но  какие бы гирьки не стояли на другой чаше весов, они все тяжелее 1, поэтому 1 нельзя ни с чем уравновесить и оставить на витрине.
2)Пусть на витрине осталась гирька весом 2.
Тогда в последнем взвешивании на одной чаше стояла гирька 2, а на другой либо 1, либо хотя бы одна гирька с весом, большим 2. Как видим, 2 тоже нельзя ни с чем уравновесить.

Так как веса 1 и 2 можно только такими оставить на витрине, но они не возможны, то ответом является вес всех гирек, без гирьки 3.
0,0(0 оценок)
Ответ:
женя1084
женя1084
13.12.2021 09:51
Нет. Например, если прочитать условие великой теоремы ферма, то никто не знал, какую вообще пользу может принести её доказательство. Тем не менее, поиск доказательства для этой, казалось бы, малозначимой теоремы, привёл к глубоким результатам в теории чисел.

"Проблема доказательства этой неразрешимости являет разительный пример того, какое побуждающее влияние на науку может оказать специальная и на первый взгляд малозначительная проблема. Ибо, побуждённый задачей Ферма, Куммер пришёл к введению идеальных чисел и к открытию теоремы об однозначном разложении чисел в круговых полях на идеальные простые множители — теоремы, которая теперь, благодаря обобщениям на любую алгебраическую числовую область, полученным Дедекиндом и Кронекером, является центральной в современной теории чисел и значение которой выходит далеко за пределы теории чисел в область алгебры и теории функций."
0,0(0 оценок)
Популярные вопросы: Математика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота