Тек бірліктер мен ондықтар разрядында тұратын цифрлар өзгеретіндей әрі 432 438 санын қосуға болатын, ең үлкен және ең кіші разрядтық бірліктердің санын көрсет.
Центром правильного треугольника является точка пересечения его медиан, найдём медиану по т.Пифагора х^2 + 9^2=18^2 x^2+81 =324 x^2 = 243 x = √243 = 9√3. А мы знаем. отрезок медианы от вершины треугольника до точки пересечения равен 2/3 всей медианы и является радиусом описанной окружности т.е. R= 2/3* 9√3 = 18√3/3 = 6√3 Можно решить задачу проще, используя формулу для радиуса описанной окружности около правильного треугольника R = а/√3, Получим 18/√3 после преобразований = 6√3, (18*√3/√3*√3 = 18*√3/3 = 6√3) ответ; R = 6√3
Площадь параллелограмма = произведению его смежных сторон на синус угла между ними S = AB · BC · sin α = 4*5* sin α =20 * sin α =16 sin α = 16/20=0,8 cos² α = 1 - sin² α = 1 - 0,8² = 1 - 0,64 = 0,36 cos α = +-0,6
Найти большую диагональ, диагональ лежащую против БОЛЬШЕГО угла ⇒ α>90 ⇒ cos α = - 0,6
В ΔАВС Квадрат стороны = сумме квадратов двух других его сторон без удвоенного произведения этих сторон на косинус угла между ними АС² = АВ² + ВС² -2 · АВ · ВС ·соs α =5² +4² + 2·5·4·0,6= 65 AC = √65 ≈ 8 - бОльшая диагональ параллелограмма
x^2+81 =324
x^2 = 243
x = √243 = 9√3.
А мы знаем. отрезок медианы от вершины треугольника до точки пересечения равен 2/3 всей медианы и является радиусом описанной окружности т.е. R= 2/3* 9√3 = 18√3/3 = 6√3
Можно решить задачу проще, используя формулу для радиуса описанной окружности около правильного треугольника R = а/√3, Получим 18/√3 после преобразований = 6√3, (18*√3/√3*√3 = 18*√3/3 = 6√3)
ответ; R = 6√3
S = AB · BC · sin α = 4*5* sin α =20 * sin α =16
sin α = 16/20=0,8
cos² α = 1 - sin² α = 1 - 0,8² = 1 - 0,64 = 0,36
cos α = +-0,6
Найти большую диагональ, диагональ лежащую против БОЛЬШЕГО угла ⇒ α>90 ⇒
cos α = - 0,6
В ΔАВС
Квадрат стороны = сумме квадратов двух других его сторон без удвоенного произведения этих сторон на косинус угла между ними
АС² = АВ² + ВС² -2 · АВ · ВС ·соs α =5² +4² + 2·5·4·0,6= 65
AC = √65 ≈ 8 - бОльшая диагональ параллелограмма