Температура воздуха с увеличением высоты на каждый1 км уменьшается на 6°С. Какая температура воздуха на поверхности Земли, если за бортом самолёта, который поднялся на 9 км температура -57°С?
1) Находим первую производную функции: y' = -3x²+12x+36 Приравниваем ее к нулю: -3x²+12x+36 = 0 x₁ = -2 x₂ = 6 Вычисляем значения функции на концах отрезка f(-2) = -33 f(6) = 223 f(-3) = -20 f(3) = 142 ответ: fmin = -33, fmax = 142 2) a) 1. Находим интервалы возрастания и убывания. Первая производная равна f'(x) = - 6x+12 Находим нули функции. Для этого приравниваем производную к нулю - 6x+12 = 0 Откуда: x₁ = 2 (-∞ ;2) f'(x) > 0 функция возрастает (2; +∞) f'(x) < 0функция убывает В окрестности точки x = 2 производная функции меняет знак с (+) на (-). Следовательно, точка x = 2 - точка максимума. б) 1. Находим интервалы возрастания и убывания. Первая производная. f'(x) = -12x2+12x или f'(x) = 12x(-x+1) Находим нули функции. Для этого приравниваем производную к нулю 12x(-x+1) = 0 Откуда: x1 = 0 x2 = 1 (-∞ ;0) f'(x) < 0 функция убывает (0; 1) f'(x) > 0 функция возрастает (1; +∞) f'(x) < 0 функция убывает В окрестности точки x = 0 производная функции меняет знак с (-) на (+). Следовательно, точка x = 0 - точка минимума. В окрестности точки x = 1 производная функции меняет знак с (+) на (-). Следовательно, точка x = 1 - точка максимума.
3. Исследуйте функцию с производной f(x)=2x^2-3x-1 1. D(y) = R 2. Чётность и не чётность: f(-x) = 2(-x)² - 3*(-x) - 1 = 2x² + 3x - 1 функция поменяла знак частично. Значит она ни чётная ни нечётная 3. Найдём наименьшее и наибольшее значение функции Находим первую производную функции: y' = 4x-3 Приравниваем ее к нулю: 4x-3 = 0 x₁ = 3/4 Вычисляем значения функции f(3/4) = -17/8 Используем достаточное условие экстремума функции одной переменной. Найдем вторую производную: y'' = 4 Вычисляем: y''(3/4) = 4>0 - значит точка x = 3/4 точка минимума функции. 4. Найдём промежутки возрастания и убывания функции: 1. Находим интервалы возрастания и убывания. Первая производная равна f'(x) = 4x-3 Находим нули функции. Для этого приравниваем производную к нулю 4x-3 = 0 Откуда: x₁ = 3/4 (-∞ ;3/4) f'(x) < 0 функция убывает (3/4; +∞) f'(x) > 0 функция возрастает В окрестности точки x = 3/4 производная функции меняет знак с (-) на (+). Следовательно, точка x = 3/4 - точка минимума
y' = -3x²+12x+36
Приравниваем ее к нулю:
-3x²+12x+36 = 0
x₁ = -2
x₂ = 6
Вычисляем значения функции на концах отрезка
f(-2) = -33
f(6) = 223
f(-3) = -20
f(3) = 142
ответ: fmin = -33, fmax = 142
2)
a) 1. Находим интервалы возрастания и убывания.
Первая производная равна
f'(x) = - 6x+12
Находим нули функции. Для этого приравниваем производную к нулю
- 6x+12 = 0
Откуда:
x₁ = 2
(-∞ ;2) f'(x) > 0 функция возрастает
(2; +∞) f'(x) < 0функция убывает
В окрестности точки x = 2 производная функции меняет знак с (+) на (-). Следовательно, точка x = 2 - точка максимума.
б) 1. Находим интервалы возрастания и убывания. Первая производная.
f'(x) = -12x2+12x
или
f'(x) = 12x(-x+1)
Находим нули функции. Для этого приравниваем производную к нулю
12x(-x+1) = 0
Откуда:
x1 = 0
x2 = 1
(-∞ ;0) f'(x) < 0 функция убывает
(0; 1) f'(x) > 0 функция возрастает
(1; +∞) f'(x) < 0 функция убывает
В окрестности точки x = 0 производная функции меняет знак с (-) на (+). Следовательно, точка x = 0 - точка минимума. В окрестности точки x = 1 производная функции меняет знак с (+) на (-). Следовательно, точка x = 1 - точка максимума.
3. Исследуйте функцию с производной f(x)=2x^2-3x-1
1. D(y) = R
2. Чётность и не чётность:
f(-x) = 2(-x)² - 3*(-x) - 1 = 2x² + 3x - 1 функция поменяла знак частично. Значит она ни чётная ни нечётная
3. Найдём наименьшее и наибольшее значение функции
Находим первую производную функции:
y' = 4x-3
Приравниваем ее к нулю:
4x-3 = 0
x₁ = 3/4
Вычисляем значения функции
f(3/4) = -17/8
Используем достаточное условие экстремума функции одной переменной. Найдем вторую производную:
y'' = 4
Вычисляем:
y''(3/4) = 4>0 - значит точка x = 3/4 точка минимума функции.
4. Найдём промежутки возрастания и убывания функции:
1. Находим интервалы возрастания и убывания.
Первая производная равна
f'(x) = 4x-3
Находим нули функции. Для этого приравниваем производную к нулю
4x-3 = 0
Откуда:
x₁ = 3/4
(-∞ ;3/4) f'(x) < 0 функция убывает
(3/4; +∞) f'(x) > 0 функция возрастает
В окрестности точки x = 3/4 производная функции меняет знак с (-) на (+). Следовательно, точка x = 3/4 - точка минимума
Необходимо каждому отличнику присвоить какую-то цифру, например, 1, 2, 3, 4 ,5 , 6, 7, 8, 9, 10.
Тогда рассмотреть следующие пары:
1-2, 1-3, 1-4, 1-5, 1-6, 1-7, 1-8, 1-9, 1-10
2-3, 2-4, 2-5, 2-6, 2-7, 2-8, 2-9, 2-10
3-4, 3-5, 3-6, 3-7, 3-8, 3-9, 3-10
4-5, 4-6, 4-7, 4-8, 4-9, 4-10.
5-6, 5-7, 5-8, 5-9, 5-10
6-7, 6-8, 6-9, 6-10.
7-8, 7-9, 7-10
8-9, 8-10
9-10
Посчитаем: 9+8+7+6+5+4+3+2+1=45
Всего