Теорія ймовірностей, 50 ів! з коробки, яка містить 4 справжні діаманти й 3 фальшиві, переклали два камені до коробки, де було 3 справжні діаманти й 4 фальшиві. яка ймовірність тепер взяти фальшивий діамант з другої коробки?
ответ:Мой любимый класс должен быть, в первую очередь, очень дружным. Ведь мы проводим в классе большую часть своего дня, мы там учимся, общаемся, играем иногда. В классе мы делаем практически все. Именно поэтому класс должен быть дружным. Все в классе должны друг другу, тогда атмосфера будет всегда хорошей и дружелюбной. Это очень важно, ведь для того, чтобы все хорошо усваивать и понимать, что тебе говорит учитель, нужно чувствовать себя комфортно. Я очень рад, что мой класс как раз такой. Все очень дружелюбные и друг другу, если это необходимо.
Решение. Используем вторую формулу на рисунке. Здесь и далее полагаем k,\,n\in Z (на всякий случай, эта запись означает, что числа n и k принадлежат множеству целых чисел):
\[ 4x+\frac{\pi}{4}=\pm\operatorname{arccos \left(-\frac{\sqrt{2}}{2}\right)}+2\pi k. \]
Арккосинус a есть число, заключенное в интервале от 0 до \pi, косинус которого равен a.
Арксинус a есть число, заключенное в интервале от -\pi до \pi, косинус которого равен a.
Другими словами, нам нужно подобрать такое число из промежутка [0;2\pi], косинус которого был бы равен -\frac{\sqrt{2}}{2}. Это число \frac{3\pi}{4}. Используя это, получаем:
ответ:Мой любимый класс должен быть, в первую очередь, очень дружным. Ведь мы проводим в классе большую часть своего дня, мы там учимся, общаемся, играем иногда. В классе мы делаем практически все. Именно поэтому класс должен быть дружным. Все в классе должны друг другу, тогда атмосфера будет всегда хорошей и дружелюбной. Это очень важно, ведь для того, чтобы все хорошо усваивать и понимать, что тебе говорит учитель, нужно чувствовать себя комфортно. Я очень рад, что мой класс как раз такой. Все очень дружелюбные и друг другу, если это необходимо.
Решение простейших тригонометрических уравнений
Пример 1. Найдите корни уравнения
\[ \cos\left(4x+\frac{\pi}{4}\right)=-\frac{\sqrt{2}}{2}, \]
принадлежащие промежутку [-\pi;\pi).
Решение. Используем вторую формулу на рисунке. Здесь и далее полагаем k,\,n\in Z (на всякий случай, эта запись означает, что числа n и k принадлежат множеству целых чисел):
\[ 4x+\frac{\pi}{4}=\pm\operatorname{arccos \left(-\frac{\sqrt{2}}{2}\right)}+2\pi k. \]
Арккосинус a есть число, заключенное в интервале от 0 до \pi, косинус которого равен a.
Арксинус a есть число, заключенное в интервале от -\pi до \pi, косинус которого равен a.
Другими словами, нам нужно подобрать такое число из промежутка [0;2\pi], косинус которого был бы равен -\frac{\sqrt{2}}{2}. Это число \frac{3\pi}{4}. Используя это, получаем:
\[ 4x+\frac{\pi}{4} = \pm\frac{3\pi}{4}+2\pi k\Leftrightarrow \left[\begin{array}{l}x = \frac{\pi}{8}+\frac{\pi k}{2}, \\ x = -\frac{\pi}{4}+\frac{\pi n}{2}.\end{array}\right. \]