В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
Misha45456
Misha45456
14.06.2022 04:54 •  Математика

Теория вероятностей, непрерывная случайная величина ( на фото)

Показать ответ
Ответ:
banana1106
banana1106
08.04.2021 20:17
1) Может, например,пусть у 5 учащихся день рождения в один и тот же день А , у шестого в (А+а) день, у седьмого в (А-а)день⇒имеем ровно 10 равных "расстояний" а, где a∈N, 0< a< 366/2=183, a≠122 , т. к. для високосного года(366 дней) при а=122 будет "расстояние" между шестым и седьмым одиннадцатым, равным а.Существуют и другие расстановки.
2) Если нет совпадающих дат рождения, то год должен быть разбит на 10 равных отрезков - "расстояний" (1,2), (2,3)... (9,10), (10,1), но ни 365, ни 366 не кратно 10⇒ Нет, не может
3) В високосный год 366/3=122, т е , если у 6 учащихся день рождения в один день А, у второй шестерки в один день (А+122), у третьей шестерки в один день (А-122), то имеем для каждой пары шестерок (1,2); (2,3); (3,1) 6*6=36 "расстояний" 122 дня, всего 36*3=108 равных "расстояний", у оставшихся 2 учащихся  могут быть любые другие месяцы дней рождений,а "расстояние" между ними может быть 122, т е итого 108+1=109. ответ: 109 "расстояний" в 122 дня- наибольшее число, год високосный
0,0(0 оценок)
Ответ:
Andriy0101
Andriy0101
08.04.2021 20:17
1) Может, например,пусть у 5 учащихся день рождения в один и тот же день А , у шестого в (А+а) день, у седьмого в (А-а)день⇒имеем ровно 10 равных "расстояний" а, где a∈N, 0< a< 366/2=183, a≠122 , т. к. для високосного года(366 дней) при а=122 будет "расстояние" между шестым и седьмым одиннадцатым, равным а.Существуют и другие расстановки.
2) Если нет совпадающих дат рождения, то год должен быть разбит на 10 равных отрезков - "расстояний" (1,2), (2,3)... (9,10), (10,1), но ни 365, ни 366 не кратно 10⇒ Нет, не может
3) В високосный год 366/3=122, т е , если у 6 учащихся день рождения в один день А, у второй шестерки в один день (А+122), у третьей шестерки в один день (А-122), то имеем для каждой пары шестерок (1,2); (2,3); (3,1) 6*6=36 "расстояний" 122 дня, всего 36*3=108 равных "расстояний", у оставшихся 2 учащихся  могут быть любые другие месяцы дней рождений,а "расстояние" между ними может быть 122, т е итого 108+1=109. ответ: 109 "расстояний" в 122 дня- наибольшее число, год високосный
0,0(0 оценок)
Популярные вопросы: Математика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота