Дана функция у = x^3-3x^2+4 1-найти область определения функции и определить точки разрыва - ограничений нет, D = R, разрывов нет. 2-Выяснить является ли чётной или нечётной. Проверим функци чётна или нечётна с соотношений f = f(-x) и f = -f(-x). Итак, проверяем: x³ - 3*x² + 4 = 4 - x³ - 3*x - Нет x³ - 3*x² + 4 = -4 - -x³ - -3*x² - Нет, значит, функция не является ни чётной, ни нечётной. 3-определить точки пересечения функции с координатными осями . График функции пересекает ось X при f = 0 значит надо решить уравнение: x³−3x²+4=0. В кубическом уравнении надо пробовать поиски корней с +-1. Подходит х = -1. Тогда заданное уравнение можно разложить на множители, поделив исходное уравнение на х+1. Получаем x³−3x²+4 = (х+1)(х²-4х+4) = (х+1)(х-2)² = 0. Имеем 2 корня: х = -1 и х = 2. График пересекает ось Y, когда x равняется 0: подставляем x = 0 в x^3 - 3*x^2 + 4. 0³−3*0²+4 = 4.Точка: (0, 4) 4-найти критические точки функции. Находим производную и приравниваем её нулю: y' = 3x²-6x = 3x(x-2). Имеем 2 критические точки: х = 0 и х = 2.5-определить промежутки монотонности (возрастания,убывания). Исследуем поведение производной вблизи критических точек. х = -0.5 0 0.5 1.5 2 2.5 y'=3x^2-6x 3.75 0 -2.25 -2.25 0 3.75. Где производная отрицательна - функция убывает, где положительна - функция возрастает. Убывает на промежутках (-oo, 0] U [2, oo) Возрастает на промежутках [0, 2] 6-определить точки экстремума. Они уже найдены: это 2 критические точки: х = 0 и х = 2. Где производная меняет знак с - на + это минимум функции, а где с + на - это максимум функции. Минимум функции в точке: x = 2, Максимум функции в точке: х = 0. 7 -определить максимальное и минимальное значение функции. Значения функции в экстремальных точках: х = 2, у = 8-3*4+4 = 0, х = 0, у = 4.8- определить промежутки вогнутости и выпуклости кривой,найти точки перегиба. Найдем точки перегибов, для этого надо решить уравнение d2/dx2f(x)=0(вторая производная равняется нулю), корни полученного уравнения будут точками перегибов для указанного графика функции, d2/dx2f(x)=6(x−1)=0 Решаем это уравнение Корни этого ур-ния x1=1 Интервалы выпуклости и вогнутости: Найдём интервалы, где функция выпуклая или вогнутая, для этого посмотрим, как ведет себя функция в точках перегибов: Вогнутая на промежутках [1, oo) Выпуклая на промежутках (-oo, 1].
1-найти область определения функции и определить точки разрыва - ограничений нет, D = R, разрывов нет.
2-Выяснить является ли чётной или нечётной.
Проверим функци чётна или нечётна с соотношений f = f(-x) и f = -f(-x).
Итак, проверяем:
x³ - 3*x² + 4 = 4 - x³ - 3*x
- Нет
x³ - 3*x² + 4 = -4 - -x³ - -3*x²
- Нет, значит, функция не является ни чётной, ни нечётной.
3-определить точки пересечения функции с координатными осями .
График функции пересекает ось X при f = 0
значит надо решить уравнение:
x³−3x²+4=0.
В кубическом уравнении надо пробовать поиски корней с +-1.
Подходит х = -1. Тогда заданное уравнение можно разложить на множители, поделив исходное уравнение на х+1.
Получаем x³−3x²+4 = (х+1)(х²-4х+4) = (х+1)(х-2)² = 0.
Имеем 2 корня: х = -1 и х = 2.
График пересекает ось Y, когда x равняется 0:
подставляем x = 0 в x^3 - 3*x^2 + 4.
0³−3*0²+4 = 4.Точка: (0, 4)
4-найти критические точки функции.
Находим производную и приравниваем её нулю:
y' = 3x²-6x = 3x(x-2).
Имеем 2 критические точки: х = 0 и х = 2.5-определить промежутки монотонности
(возрастания,убывания).
Исследуем поведение производной вблизи критических точек.
х = -0.5 0 0.5 1.5 2 2.5
y'=3x^2-6x 3.75 0 -2.25 -2.25 0 3.75.
Где производная отрицательна - функция убывает, где положительна - функция возрастает.
Убывает на промежутках (-oo, 0] U [2, oo)
Возрастает на промежутках [0, 2]
6-определить точки экстремума.
Они уже найдены: это 2 критические точки: х = 0 и х = 2.
Где производная меняет знак с - на + это минимум функции, а где с + на - это максимум функции.
Минимум функции в точке: x = 2,
Максимум функции в точке: х = 0.
7 -определить максимальное и минимальное значение функции.
Значения функции в экстремальных точках:
х = 2, у = 8-3*4+4 = 0,
х = 0, у = 4.8- определить промежутки вогнутости и выпуклости кривой,найти точки перегиба.
Найдем точки перегибов, для этого надо решить уравнение
d2/dx2f(x)=0(вторая производная равняется нулю),
корни полученного уравнения будут точками перегибов для указанного графика функции,
d2/dx2f(x)=6(x−1)=0
Решаем это уравнение
Корни этого ур-ния
x1=1
Интервалы выпуклости и вогнутости:
Найдём интервалы, где функция выпуклая или вогнутая, для этого посмотрим, как ведет себя функция в точках перегибов:
Вогнутая на промежутках
[1, oo)
Выпуклая на промежутках
(-oo, 1].
Пошаговое объяснение:
Так, как через 10 лет их возраст будет 40 лет, то надо узнать их возраст в настоящее время:
1) 40 - 10 = 30 лет.
Надо узнать скольким лет был их общий возраст 5 лет назад:
2) 30 - 5 = 25 лет был их общий возраст 5 лет назад.
Надо узнать сколько лет им было. когда их возраст поднялся в 3 раза:
3) 25 * 3 = 75 лет.
решаем главный вопрос задачи, через сколько лет их общий возраст станет в три раза больше, чем был 5 лет назад.
4) 75 - 25 = 50 лет
ответ: через 50 лет их общий возраст станет в три раза больше, чем был 5 лет назад.