Решение пусть в основании равнобедренная трапеция авсд, где основания ад и вс, причём ав=вс=сд=4 и угол вад =углу адс =60. найдём площадь этой трапеции из точек в и с проведём высоты в трапеции вк и см. из тр-ка авк находим вк = 4*sin60 =2√3 это высота трапеции ак = 4*cos60 = 2 тогда и мк=2 и ад =4+2+2 =8 площадь трапеции равнв = (8+4)*2√3 /2 =12√3 из тр-ка вкд по теореме пифагора найдём диагональ трапеции вд² =вк² +кд² = (2√3)² +6² =48 тогда вд = √48 = 4√3 из тр-ка вдд1 где вд =4√3 и угол двд1 =30 находим дд1= вд*tg30 =4√3* 1/√3 =4 тогда объём равен = 12√3*4 =48√3
Сумма углов, прилежащих к стороне, равна 180 градусов Так как острый угол=60 получим 180-60=120 градус. А диагональ делит тупой угол 1:3 х+3х=120 4х=120 х=120/4 х=30 3х=3·30=90 Диагональ делит параллелограмма на 2 равные треугольника которые углы равны 60, 30 и 90 град. а это прямоугольный треугольник. В прямоугольном треугольнике противо лежащей катет к углу 30 град. равен половине гипотенузы. Большая сторона параллелограмма это гипотенуза. х+2х+х+2х=60 6х=60 х=10 2х=2·10=20 ответ 20см
х+3х=120 4х=120 х=120/4 х=30 3х=3·30=90 Диагональ делит параллелограмма на 2 равные треугольника которые углы равны 60, 30 и 90 град. а это прямоугольный треугольник. В прямоугольном треугольнике противо лежащей катет к углу 30 град. равен половине гипотенузы. Большая сторона параллелограмма это гипотенуза.
х+2х+х+2х=60 6х=60 х=10 2х=2·10=20 ответ 20см