В данном случае прямая задана пересечением плоскостей.
1) для составления канонического уравнения нужно найти точку, через которую проходит данная прямая, и направляющий вектор этой прямой.
Положим z=0, тогда система уравнений, задающая прямую, примет вид:
6*x+3*y=0
x+2*y=12
Решая её, находим x=-4 и y=8. Таким образом, найдена точка М(-4; 8; 0), которая принадлежит прямой. Для нахождения направляющего вектора прямой P заметим, что он ортогонален нормальным векторам N1 и N2 пересекающихся плоскостей и равен их векторному произведению: P=N1xN2. А его можно записать в виде определителя:
N1xN2= i j k , где N1x=6, N1y=3, N1z=-2, N2x=1, N2y=2, N2z=6 -
N1x N1y N1z координаты направляющих векторов, а i, j, k -
Подставляя координаты векторов, получаем определитель i j k
6 3 -2
1 2 6,
раскладывая который по первой строке, находим P=22*i-38*j+9*k=Px*i+Py*j+Pz*k . Теперь составим каноническое уравнение прямой по точке M (Mx; My; Mz) и направляющему вектору P:
(x-Mx)/Px=(y-My)/Py=(z-Mz)/Pz. Подставляя известные значения, приходим к уравнению (x+4)/22=(y-8)/(-38)=z/9.
96% = 96/100 = 24/25 - сократили на 4
1-й класс - х учеников
2-й класс - (х + 3) учеников
3-й класс - (8/9 · х) учеников
4-й класс - (8/9 · х) : 24/25 = 8/9 · 25/24 · х = 25/27 · х
Всего 106 учеников. Уравнение:
х + х + 3 + (8/9)х + (25/27)х = 106
2х + (24/27)х + (25/27)х = 106 - 3
2х + (49/27)х = 103
(103/27)х = 103
х = 103 : 103/27
х = 103 · 27/103
х = 27 (уч.) - в первом классе
27 + 3 = 30 (уч.) - во втором классе
8/9 · 27 = 27 : 9 · 8 = 24 (уч.) - в третьем классе
25/27 · 27 = 25 (уч.) - в четвёртом класса
Или так: 24 : 0,96 = 25 (уч.) - в четвёртом классе
ответ: 27, 30, 24 и 25 соответственно.
Пояснения:
8/9 = 24/27
24/27 + 25/27 = 49/27
2х + (49/27)х = (2 целых 49/27)х = (2·27+49)/27 · х = (103/27)х
ответ: (x+4)/22=(y-8)/(-38)=z/9
Пошаговое объяснение:
В данном случае прямая задана пересечением плоскостей.
1) для составления канонического уравнения нужно найти точку, через которую проходит данная прямая, и направляющий вектор этой прямой.
Положим z=0, тогда система уравнений, задающая прямую, примет вид:
6*x+3*y=0
x+2*y=12
Решая её, находим x=-4 и y=8. Таким образом, найдена точка М(-4; 8; 0), которая принадлежит прямой. Для нахождения направляющего вектора прямой P заметим, что он ортогонален нормальным векторам N1 и N2 пересекающихся плоскостей и равен их векторному произведению: P=N1xN2. А его можно записать в виде определителя:
N1xN2= i j k , где N1x=6, N1y=3, N1z=-2, N2x=1, N2y=2, N2z=6 -
N1x N1y N1z координаты направляющих векторов, а i, j, k -
N2x N2y N2z орты (единичные векторы) координатных осей.
Подставляя координаты векторов, получаем определитель i j k
6 3 -2
1 2 6,
раскладывая который по первой строке, находим P=22*i-38*j+9*k=Px*i+Py*j+Pz*k . Теперь составим каноническое уравнение прямой по точке M (Mx; My; Mz) и направляющему вектору P:
(x-Mx)/Px=(y-My)/Py=(z-Mz)/Pz. Подставляя известные значения, приходим к уравнению (x+4)/22=(y-8)/(-38)=z/9.