точка М не лежит ни в одной из параллельных плоскостей а(альфа) и в(бета), через эту точку проведены две прямые, пересекающие плоскости A и B, соответственно в точках A и B, A1 и B1 так, что MA = 4 см, AA1=16cm, A1B1=12 cm. Найдите длину отрезка AB, если плоскость а(альфа) лежит между точкой М и плоскостью в(бета)
Решение пусть в основании равнобедренная трапеция авсд, где основания ад и вс, причём ав=вс=сд=4 и угол вад =углу адс =60. найдём площадь этой трапеции из точек в и с проведём высоты в трапеции вк и см. из тр-ка авк находим вк = 4*sin60 =2√3 это высота трапеции ак = 4*cos60 = 2 тогда и мк=2 и ад =4+2+2 =8 площадь трапеции равнв = (8+4)*2√3 /2 =12√3 из тр-ка вкд по теореме пифагора найдём диагональ трапеции вд² =вк² +кд² = (2√3)² +6² =48 тогда вд = √48 = 4√3 из тр-ка вдд1 где вд =4√3 и угол двд1 =30 находим дд1= вд*tg30 =4√3* 1/√3 =4 тогда объём равен = 12√3*4 =48√3
ответ: 125/6 = 20 5/6 кв. ед.
Пошаговое объяснение:
Найдите площадь фигуры ограниченной линиями
y=5x+x^2+2, y=2.
Строим графики функций (См. скриншот).
Площадь S=S(AmB) - S(AnB).
По формуле Ньютона-Лейбница
S=∫ₐᵇf(x)dx=F(x)|ₐᵇ = F(b)-F(a).
Пределы интегрирования (См. скриншот) a= -5; b=0. Тогда
S=∫₋₅⁰2dx - ∫₋₅⁰(5x+x^2+2)dx = 125/6 = 20 5/6 кв. ед.
1) ∫₋₅⁰2dx=2∫₋₅⁰dx = 2x|₋₅⁰ = 2(0-(-5))=10;
2) ∫₋₅⁰(5x+x^2+2)dx = 5∫₋₅⁰xdx + ∫₋₅⁰x²dx + 2∫₋₅⁰dx =
= 5(x²/2)|₋₅⁰+x³/3|₋₅⁰ + 2(x)|₋₅⁰ = 5/2(0²-(-5)²) + 1/3(0³-(-5)³) + 2(0-(-5)) =
=5/2*(-25) + 1/3*125 +2*5 = -65/6
3) 5-(-65/6) = 10+65/6 = 125/6 = 20 5/6 кв. ед.