Точка o центр некоторой окружности, a точка вне окружности, b точка на окружности такая, что ab касательная. ao=8 . найдите наибольшее возможное значение площади треугольника aob 16 36 64 144 256
*) Треугольники, образованные отрезками касательных из одной точки, радиусами и отрезком, соединяющим точку и центр окружности, равны как прямоугольные (радиус перпендикулярен касательной) с равными катетами (радиусы) и общей гипотенузой.
AD - диаметр окружности, описанной около △ABM.
∠ABD=90 (опирается на диаметр)
∠ABO=90 (угол между касательной и радиусом)
∠DBO - развернутый, B∈DO
∠AMD=90 (опирается на диаметр), DM - высота △ADO
В треугольнике ADO высота является медианой =>
△ADO - равнобедреный, углы при основании равны, ∠DAO=∠AOD
△AOB=△AOC (прямоугольные с равными катетами и общей гипотенузой)*
∠AOD=∠AOC
∠DAO=∠AOC => AD||OC (накрест лежащие углы равны)
ОС⊥AC (радиус перпендикулярен касательной) => AD⊥AC
AC - касательная к окружности c диаметром AD.
*) Треугольники, образованные отрезками касательных из одной точки, радиусами и отрезком, соединяющим точку и центр окружности, равны как прямоугольные (радиус перпендикулярен касательной) с равными катетами (радиусы) и общей гипотенузой.