Решаем, как обычное квадратное уравнение. D = (3a-1)^2 - 4*1(-(a+1)) = 9a^2-6a+1+4a+4 = 9a^2-2a+5 Этот дискриминант сам корней не имеет, то есть > 0 при любом а. x1 = (3a-1-√(9a^2-2a+5))/2 x2 = (3a-1+√(9a^2-2a+5))/2 Теперь нужно проверить, что оба корня по модулю больше 1. Очевидно, что x2 > x1. Возможно 3 варианта.
1) Оба корня меньше -1. Достаточно проверить x2. (3a-1+√(9a^2-2a+5))/2 < -1 3a-1+√(9a^2-2a+5) < -2 √(9a^2-2a+5) < -3a-1 Корень арифметический, поэтому -3a-1 > 0; 3a+1 < 0; a < -1/3 9a^2-2a+5 < (-3a-1)^2 9a^2-2a+5 < 9a^2+6a+1 4 < 8a; a > 1/2. Но a < -1/3, поэтому решений нет.
2) Оба корня больше 1. Достаточно проверить x1. (3a-1-√(9a^2-2a+5))/2 > 1 3a-1-√(9a^2-2a+5) > 2 3a-3 > √(9a^2-2a+5) Корень арифметический, поэтому 3a-3 > 0; a-1 > 0; a > 1 9a^2-18a+9 > 9a^2-2a+5 4 > 16a; a < 1/4 Но a > 1, поэтому решений нет.
3) Один корень меньше -1, другой больше 1. x1 < x2, поэтому { (3a-1-√(9a^2-2a+5))/2 < -1 { (3a-1+√(9a^2-2a+5))/2 > 1 Умножаем на 2 { 3a-1-√(9a^2-2a+5) < -2 { 3a-1+√(9a^2-2a+5) > 2 Переносим корни отдельно { 3a-1+2 < √(9a^2-2a+5) { √(9a^2-2a+5) > 2-3a+1 Корни арифметические, поэтому: а) Если 3a+1 < 0, то есть a < -1/3, то 1 неравенство верно всегда. б) Если 3a+1 >=0, то a >= -1/3 в) Если 3-3a < 0, то есть а > 1, то 2 неравенство верно всегда. г) Если 3-3а >= 0, то а <= 1. Возводим всё в квадрат { 9a^2+6a+1 < 9a^2-2a+5 { 9a^2-2a+5 > 9-18a+9a^2 Приводим подобные { 8a < 4; a < 1/2 при а >= -1/3 { -4 > -16a; a > 1/4 при а <= 1 ответ: а принадлежит (1/4; 1/2)
1. не знаю. 2.нужно постоять, и подождать, вдруг, когда они увидят что тебя нет, пойдут обратно, на то место, где виделись последний раз. 3.с использованием подручных средств,на плотах, на лодках льду. 4.не знаю. 5. Выберите место для разведения костра, оно может находиться недалеко от водоема.Собранные дрова разложите по принципу клетки, т. е. ряды дров располагаются перпендикулярно друг другу.Для растопки соберите бересту, стружки сухих хвойных деревьев, сломанные сухие веточки, смолистые щепки, куски коры, сложите шалашиком под собранными дровами и подожгите спичками. После того как костер разгорелся, подкладывайте дрова продольно в одном направлении друг на друга. Костер нужно залить водой (или другой жидкостью) или присыпать землей перед вашим уходом. 6. не знаю. НУ ВОТ, всем, чем могла
D = (3a-1)^2 - 4*1(-(a+1)) = 9a^2-6a+1+4a+4 = 9a^2-2a+5
Этот дискриминант сам корней не имеет, то есть > 0 при любом а.
x1 = (3a-1-√(9a^2-2a+5))/2
x2 = (3a-1+√(9a^2-2a+5))/2
Теперь нужно проверить, что оба корня по модулю больше 1.
Очевидно, что x2 > x1. Возможно 3 варианта.
1) Оба корня меньше -1. Достаточно проверить x2.
(3a-1+√(9a^2-2a+5))/2 < -1
3a-1+√(9a^2-2a+5) < -2
√(9a^2-2a+5) < -3a-1
Корень арифметический, поэтому
-3a-1 > 0; 3a+1 < 0; a < -1/3
9a^2-2a+5 < (-3a-1)^2
9a^2-2a+5 < 9a^2+6a+1
4 < 8a; a > 1/2.
Но a < -1/3, поэтому решений нет.
2) Оба корня больше 1. Достаточно проверить x1.
(3a-1-√(9a^2-2a+5))/2 > 1
3a-1-√(9a^2-2a+5) > 2
3a-3 > √(9a^2-2a+5)
Корень арифметический, поэтому
3a-3 > 0; a-1 > 0; a > 1
9a^2-18a+9 > 9a^2-2a+5
4 > 16a; a < 1/4
Но a > 1, поэтому решений нет.
3) Один корень меньше -1, другой больше 1. x1 < x2, поэтому
{ (3a-1-√(9a^2-2a+5))/2 < -1
{ (3a-1+√(9a^2-2a+5))/2 > 1
Умножаем на 2
{ 3a-1-√(9a^2-2a+5) < -2
{ 3a-1+√(9a^2-2a+5) > 2
Переносим корни отдельно
{ 3a-1+2 < √(9a^2-2a+5)
{ √(9a^2-2a+5) > 2-3a+1
Корни арифметические, поэтому:
а) Если 3a+1 < 0, то есть a < -1/3, то 1 неравенство верно всегда.
б) Если 3a+1 >=0, то a >= -1/3
в) Если 3-3a < 0, то есть а > 1, то 2 неравенство верно всегда.
г) Если 3-3а >= 0, то а <= 1.
Возводим всё в квадрат
{ 9a^2+6a+1 < 9a^2-2a+5
{ 9a^2-2a+5 > 9-18a+9a^2
Приводим подобные
{ 8a < 4; a < 1/2 при а >= -1/3
{ -4 > -16a; a > 1/4 при а <= 1
ответ: а принадлежит (1/4; 1/2)
НУ ВОТ, всем, чем могла