Наибольший общий делитель Общий делитель. Наибольший общий делитель. Общим делителем нескольких чисел называется число, которое является делите-лем каждого из них. Например, числа 36, 60, 42 имеют общие делители 2, 3 и 6. Среди всех общих делителей всегда есть наибольший, в данном случае это 6. Это и есть наибольший общий делитель (НОД). Чтобы найти наибольший общий делитель (НОД) нескольких чисел надо: 1) представить каждое число как произведение его простых множителей, например: 360 = 2 · 2 · 2 · 3 · 3 · 5 , 2) записать степени всех простых множителей: 360 = 2 · 2 · 2 · 3 · 3 · 5 = 23 · 32 · 51, 3) выписать все общие делители (множители) этих чисел; 4) выбрать наименьшую степень каждого из них, встретившуюся во всех произведениях; 5) перемножить эти степени. П р и м е р . Найти НОД чисел: 168, 180 и 3024. Р е ш е н и е . 168 = 2 · 2 · 2 · 3 · 7 = 23 · 31 · 71 , 180 = 2 · 2 · 3 · 3 · 5 = 22 · 32 · 51 , 3024 = 2 · 2 · 2 · 2 · 3 · 3 · 3 · 7 = 24 · 33 · 71 . Выпишем наименьшие степени общих делителей 2 и 3 и перемножим их: НОД = 22 · 31 = 12 . Наименьшее общее кратное Общее кратное. Наименьшее общее кратное. Общим кратным нескольких чисел называется число, которое делится на каждое из этих чисел. Например, числа 9, 18 и 45 имеют общее кратное 180. Но 90 и 360 – тоже их общие кратные. Среди всех общих кратных всегда есть наименьшее, в данном случае это 90. Это число называется наименьшим общим кратным (НОК). Чтобы найти наименьшее общее кратное (НОК) нескольких чисел надо: 1) представить каждое число как произведение его простых множителей, например: 504 = 2 · 2 · 2 · 3 · 3 · 7 , 2) записать степени всех простых множителей: 504 = 2 · 2 · 2 · 3 · 3 · 7 = 23 · 32 · 71, 3) выписать все простые делители (множители) каждого из этих чисел; 4) выбрать наибольшую степень каждого из них, встретившуюся во всех разложениях этих чисел; 5) перемножить эти степени. П р и м е р . Найти НОК чисел: 168, 180 и 3024. Р е ш е н и е . 168 = 2 · 2 · 2 · 3 · 7 = 23 · 31 · 71 , 180 = 2 · 2 · 3 · 3 · 5 = 22 · 32 · 51 , 3024 = 2 · 2 · 2 · 2 · 3 · 3 · 3 · 7 = 24 · 33 · 71 . Выписываем наибольшие степени всех простых делителей и перемножаем их: НОК = 24 · 33 · 51 · 71 = 15120 .
П р и м е р . Найти НОД чисел: 168, 180 и 3024. Р е ш е н и е . 168 = 2 · 2 · 2 · 3 · 7 = 23 · 31 · 71 , 180 = 2 · 2 · 3 · 3 · 5 = 22 · 32 · 51 , 3024 = 2 · 2 · 2 · 2 · 3 · 3 · 3 · 7 = 24 · 33 · 71 . Выпишем наименьшие степени общих делителей 2 и 3 и перемножим их: НОД = 22 · 31 = 12 . Наименьшее общее кратное Общее кратное. Наименьшее общее кратное. Общим кратным нескольких чисел называется число, которое делится на каждое из этих чисел. Например, числа 9, 18 и 45 имеют общее кратное 180. Но 90 и 360 – тоже их общие кратные. Среди всех общих кратных всегда есть наименьшее, в данном случае это 90. Это число называется наименьшим общим кратным (НОК). Чтобы найти наименьшее общее кратное (НОК) нескольких чисел надо: 1) представить каждое число как произведение его простых множителей, например: 504 = 2 · 2 · 2 · 3 · 3 · 7 , 2) записать степени всех простых множителей: 504 = 2 · 2 · 2 · 3 · 3 · 7 = 23 · 32 · 71, 3) выписать все простые делители (множители) каждого из этих чисел; 4) выбрать наибольшую степень каждого из них, встретившуюся во всех разложениях этих чисел; 5) перемножить эти степени.
П р и м е р . Найти НОК чисел: 168, 180 и 3024. Р е ш е н и е . 168 = 2 · 2 · 2 · 3 · 7 = 23 · 31 · 71 , 180 = 2 · 2 · 3 · 3 · 5 = 22 · 32 · 51 , 3024 = 2 · 2 · 2 · 2 · 3 · 3 · 3 · 7 = 24 · 33 · 71 . Выписываем наибольшие степени всех простых делителей и перемножаем их: НОК = 24 · 33 · 51 · 71 = 15120 .
обозначим середину ребра МА точкой K.
О - точка пересечения диагоналей основания, т.е. МО - высота пирамиды;
точка E - середина MB, точка G - середина MD;
P - точка пересечения диагоналей KGCE;
KH - перпендикуляр, опущенный от точки K на прямую AC
MO и CK - медианы треуголника AMC⇒MP/MO=2/3
△MEG∼△MBD⇒EG=2/3BD.
EKGC - четырехугольник, диагонали которого - перпендикулярны: BD⊥MO,BD⊥AC⇒BD⊥(MAC)⇒BD⊥CK.
Так как EG||BD, значит EG⊥CK
CH=3/4AC,KH=1/2MO ( KH - средняя линия треугольника AMC), CK= (CH^2+KH^2) под корнем ( по теореме Пифагора)
( а дальше я не знаю...)