Периметр - сумма длин всех сторон. У равнобедренного треугольника: две равные стороны и основание. Пусть а - сторона треугольника , b - основание. Р= a+a+b =30 см Следовательно может быть : 1) Основание больше на 3 см, чем сторона. Р= a+a+(a+3)= 30 см 3а+3=30 3а=30-3 3а=27 а=9 см - сторона треугольника 9+3=12 см - основание треугольника Р= 9+9+12 =30 см 2) Сторона больше на 3 см, чем основание. Р= (b+3)+(b+3) +b =30 3b+6= 30 3b=30-6 3b=24 b=8 см - основание 8+3= 11 см - сторона Р= 11+11+8=30 см. ответ: стороны равнобедренного треугольника могут быть: 1) 9 см, 9 см, 12 см 2) 11 см , 11 см, 8 см
Для определения числа цифр в частном следует помнить, что неполному делимому соответствует одна цифра частного, а всем остальным цифрам делимого — еще по одной цифре частного.Так же выполняется деление на любое многозначное число (трехзначное, четырехзначное и т. д.). Приведем пример:Разделим 876 на 24. Прикидка 800 : 20 = 40 показывает, что в ответе должно получиться число, близкое к 40.Как и при делении на однозначное число, будем последовательно переходить от деления более крупных счетных единиц к делению более мелких единиц.Число сотен 8 является однозначным, поэтому делим 87 десятков на 24. Получится 3 десятка и еще 15 десятков останется (87 - 3 • 24 = 15). 15 десятков и 6 единиц — это 156. А если 156 разделить на 24, то получится 6 и 12 в остатке (156 - 24 • 6 = 12). Всего получится 3 десятка и 6 единиц, то есть 36, а в остатке 12. Это записывают так:
У равнобедренного треугольника: две равные стороны и основание.
Пусть а - сторона треугольника , b - основание.
Р= a+a+b =30 см
Следовательно может быть :
1) Основание больше на 3 см, чем сторона.
Р= a+a+(a+3)= 30 см
3а+3=30
3а=30-3
3а=27
а=9 см - сторона треугольника
9+3=12 см - основание треугольника
Р= 9+9+12 =30 см
2) Сторона больше на 3 см, чем основание.
Р= (b+3)+(b+3) +b =30
3b+6= 30
3b=30-6
3b=24
b=8 см - основание
8+3= 11 см - сторона
Р= 11+11+8=30 см.
ответ: стороны равнобедренного треугольника могут быть:
1) 9 см, 9 см, 12 см
2) 11 см , 11 см, 8 см