Наличие искомых клеток возможно только при соприкасающихся прямоугольниках.
Наличие искомых клеток возможно только при соприкасающихся прямоугольниках. Предположим, что мы имеем не соприкасающиеся прямоугольника, значит вокруг каждого прямоугольника мы имеем как минимум 3 пустых клетки. Следовательно, общая площадь доски должна быть: 85 клеток, что противоречит условию, т.к. размер поля 8*8=64. Следовательно обязательно имеются смежные прямоугольники, т.е. найдутся 2 клетки, имеющие общую сторону, лежащие в каждом из этих прямоугольников.
Пошаговое объяснение:1. Трое ели торт. Малыш, Карлсон и Винни-Пух съели торт. Они ели одновременно и каждый ел торт с собственной постоянной скоростью. Малышу досталась только 1/13 часть торта. А вот если бы Малыш ел только с Карлсоном, то ему бы досталась только четверть торта. Какую долю торта съел бы Малыш, если бы он ел только с Винни-Пухом? (В ответе приведите такое число N, что Малышу достанется 1/N часть торта).
Решение. 1) Если бы Малыш ел торт только с Карлсоном, то ему бы досталась 1/4 часть торта. Остаток — 3/4 торта — съел бы Карлсон. Значит, «скорость» Карлсона в 3 раза больше «скорости» Малыша.
2) Когда ели торт втроём, то Малыш съел 1/13, а Карлсон — в 3 раза больше, то есть 3/13, а вместе — 4/13 торта. Тогда Винни-Пуху достались оставшиеся 1 – 4/13 = 9/13 торта. Значит, «скорость» Винни-Пуха в 9 раз больше «скорости» Малыша.
3) Если бы торт ели Винни-Пух и Малыш, то Малыш съел бы 1 часть, Винни-Пух 9 таких же частей. То есть Малыш съел бы 1 часть из 10, или 1/10 торта.
Наличие искомых клеток возможно только при соприкасающихся прямоугольниках.
Наличие искомых клеток возможно только при соприкасающихся прямоугольниках. Предположим, что мы имеем не соприкасающиеся прямоугольника, значит вокруг каждого прямоугольника мы имеем как минимум 3 пустых клетки. Следовательно, общая площадь доски должна быть: 85 клеток, что противоречит условию, т.к. размер поля 8*8=64. Следовательно обязательно имеются смежные прямоугольники, т.е. найдутся 2 клетки, имеющие общую сторону, лежащие в каждом из этих прямоугольников.
Пошаговое объяснение:1. Трое ели торт. Малыш, Карлсон и Винни-Пух съели торт. Они ели одновременно и каждый ел торт с собственной постоянной скоростью. Малышу досталась только 1/13 часть торта. А вот если бы Малыш ел только с Карлсоном, то ему бы досталась только четверть торта. Какую долю торта съел бы Малыш, если бы он ел только с Винни-Пухом? (В ответе приведите такое число N, что Малышу достанется 1/N часть торта).
Решение. 1) Если бы Малыш ел торт только с Карлсоном, то ему бы досталась 1/4 часть торта. Остаток — 3/4 торта — съел бы Карлсон. Значит, «скорость» Карлсона в 3 раза больше «скорости» Малыша.
2) Когда ели торт втроём, то Малыш съел 1/13, а Карлсон — в 3 раза больше, то есть 3/13, а вместе — 4/13 торта. Тогда Винни-Пуху достались оставшиеся 1 – 4/13 = 9/13 торта. Значит, «скорость» Винни-Пуха в 9 раз больше «скорости» Малыша.
3) Если бы торт ели Винни-Пух и Малыш, то Малыш съел бы 1 часть, Винни-Пух 9 таких же частей. То есть Малыш съел бы 1 часть из 10, или 1/10 торта.
В ответе надо было указать число 10.