Требуется изготовить полотняный шатер имеющий форму прямого кругового конуса заданной вместимости 9\2п (м^3). каковы должны быть размеры конуса ( высота к радиусу основания), чтобы на шатер ушло наименьшее кол-во полотна?
дайте как можно более подробный ответ.
Проводится первое семейство прямых, круг разбивается на 23 части-- при условии, что каждая из прямых пересекает его по отрезку. Когда проводится одна из прямых второго семейства, то она пересекает 22 линий первого семейства. Если при этом она пересекает круг по отрезку , то отрезок разбивается на 23 части, и каждая из них подразбивает на две части одну из предыдущих областей разбиения. Это значит, что при проведении очередной прямой добавляется 23 части, а после проведения 24 прямых к уже имеющимся 23 частям добавится не более 552.
Рассмотрим прямую третьего семейства. Она может пересечь максимум 22+24=46
отрезков, добавив при этом 47 новых части.. В итоге к имеющемуся количеству добавится максимум 46⋅31.
Получим 23+23*24+47*31=23+552+1457=2032 части
.
тогда время на пером участке х-0,5
путь = скорость * время
путь на 1 участке= 42(х-0,5)
путь на 2 участке 30х
путь на 1 участке + путь на 2 участке =129
42(х-0,5)+30х=129
42х-21+30х=129
72х-21=129
72х=129+21
72х=150
х=150/72=75/36 = 1 целая 39/36 часа это время на втором участке
х-0,5=72/36-1/2=57/36 =1 целая 21/36 часа это время на первом участке
проверка
42*(57/36)+30(75/36)=(42*57+30*75)/36=(2394+2250).36=4644/36=129
все получается только цифры какие-то нескладные