4 - наибольшее возможное значение величины, равной наименьшей из разностей между номерами соседних (по кругу) секторов. Один из вариантов расположения номеров секторов на рис.1.
5 и более получить невозможно, так как для числа 5 с одной стороны можно расположить сектор с номером 10 (10-5=5), а с другой стороны получить разность, более 4, нельзя, так как 5-1=4 и 9-5=4.
Аналогично для числа 6. Если с одной стороны можно получить разность 6-1=5, то с другой стороны более 4 не получится, так как 10-6=4 и 6-2=4. Рис.2 и рис.3
4 - наибольшее возможное значение величины, равной наименьшей из разностей между номерами соседних (по кругу) секторов. Один из вариантов расположения номеров секторов на рис.1.
5 и более получить невозможно, так как для числа 5 с одной стороны можно расположить сектор с номером 10 (10-5=5), а с другой стороны получить разность, более 4, нельзя, так как 5-1=4 и 9-5=4.
Аналогично для числа 6. Если с одной стороны можно получить разность 6-1=5, то с другой стороны более 4 не получится, так как 10-6=4 и 6-2=4. Рис.2 и рис.3
Пошаговое объяснение:
Р₁{1-й стрел. попал}=0,8 P₁'{1-й стрел. не попал}=1-0,8=0,2
P₂{2-й стрел. попал}-0,7 P₂'{2-й стрел. не попал}=1-0,7=0,3
P₃{3-й стрел. попал}=0,6 P₃'{3-й стрел. не попал}=1-0,6=0,4
1) 0 попаданий ( все три стрелка промахнулись, т.е. 1-й не попал и 2-й не попал и 3-й не попал)
вероятность=P₁'·P₂'·P₃'=0,2·0,3·0,4=0,024
2)1 попадание (1-й попал, а 2-й и 3-й нет или 2-й попал, а 1-й и 3-й нет или 3-й попал, а 1-й и 2-й нет)
вероятность=P₁·P₂'·P₃'+P₁'·P₂·P₃'+P₁'·P₂'·P₃=0,8·0,3·0,4+0,2·0,7·0,4+0,2·0,3·0,6=0,096+0,056+0,036=0,188
3)2 попадания (1-й и 2-й попали а 3-й нет или 1-й и 3-й попали а 2-й нет или 2-й и 3-й попали а 1-й нет)
вероятность=P₁·P₂·P₃'+P₁·P₂'·P₃+P₁'·P₂·P₃=0,8·0,7·0,4+0,8·0,3·0,6+0,2·0,7·0,6=0,224+0,144+0,084=0,452
4)3 попадания (все трое попали 1-й попал и 2-й попал и 3-й попал)
вероятность=P₁·P₂·P₃=0,8·0,7·0,6=0,336
число попаданий 0 1 2 3
вероятность 0,024 0,188 0,452 0,336