пошаговое объяснение: собаке требуется 2017 чисел, значит из 2019 как минимум 2017 таких чисел, которые после добавления или отнятия единицы становятся кратны 4, так как не существует чисел которые при любой из этих операций кратны 4 собака в лучшем случае может взять 1010 кратных при +1 и 1009 кратных при -1(или наоборот). и так, даже если брать по 2 числа(один кратных при +1, второй при -1) собака получит максимум 1009 кратных 4, но не больше(если у свиньи есть мозги конечно).
при выборе произвольного числа n и последующем действии в итоге могут быть получены числа n-1 или n+1, так как они отличаются на 2, а целью собаки является получить число кратное 4, то свинья любое произвольное единичное число может превратить в не кратное 4.
минимальное число чисел которое может задать собака для получения числа кратного 4 является два. это должны быть числа 4*z1 - 1 и 4*z2 + 1 (где z1 и z2 - целые числа). в этом случае как при увеличении, так и при уменьшении на 1, одно из чисел становится кратным 4.
в любой последовательности чисел с четным количеством членов не более половины может быть после действия свиньи кратным 4 (если свинья не поддается), в случае нечетного количества членов, свинья может выбрать действие, которое превращает в не кратные 4 больше половины членов ряда (можно разделить ряд на пары + 1 число и потом произвести над ними одно и то же действие так, что не более одного числа в паре станет кратным 4, а единичное число не будет кратно 4).
в итоге из произвольного ряда чисел (после действия свиньи) кратных 4 может быть получено не более n/2 для рядов с четным количеством членов и не более (n-1)/2 для рядов с нечетным количеством членов
таким образом максимальное количество чисел, кратных 4, которые может получить собака будет равно (2019-1)/2 = 1009
ответ: удастся.
пошаговое объяснение: собаке требуется 2017 чисел, значит из 2019 как минимум 2017 таких чисел, которые после добавления или отнятия единицы становятся кратны 4, так как не существует чисел которые при любой из этих операций кратны 4 собака в лучшем случае может взять 1010 кратных при +1 и 1009 кратных при -1(или наоборот). и так, даже если брать по 2 числа(один кратных при +1, второй при -1) собака получит максимум 1009 кратных 4, но не больше(если у свиньи есть мозги конечно).
ответ:
удастся помешать
пошаговое объяснение:
при выборе произвольного числа n и последующем действии в итоге могут быть получены числа n-1 или n+1, так как они отличаются на 2, а целью собаки является получить число кратное 4, то свинья любое произвольное единичное число может превратить в не кратное 4.
минимальное число чисел которое может задать собака для получения числа кратного 4 является два. это должны быть числа 4*z1 - 1 и 4*z2 + 1 (где z1 и z2 - целые числа). в этом случае как при увеличении, так и при уменьшении на 1, одно из чисел становится кратным 4.
в любой последовательности чисел с четным количеством членов не более половины может быть после действия свиньи кратным 4 (если свинья не поддается), в случае нечетного количества членов, свинья может выбрать действие, которое превращает в не кратные 4 больше половины членов ряда (можно разделить ряд на пары + 1 число и потом произвести над ними одно и то же действие так, что не более одного числа в паре станет кратным 4, а единичное число не будет кратно 4).
в итоге из произвольного ряда чисел (после действия свиньи) кратных 4 может быть получено не более n/2 для рядов с четным количеством членов и не более (n-1)/2 для рядов с нечетным количеством членов
таким образом максимальное количество чисел, кратных 4, которые может получить собака будет равно (2019-1)/2 = 1009