В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
Anastasii03
Anastasii03
29.11.2020 03:15 •  Математика

U
а) Виділи цілу частину з дробу . Познач цей дріб і чисто.
що утворилося, на числовому промені.
23-
0 1 2 3 4 5 6
б) Запиши у вигляді неправильного дробу число 3. Позначи
це число та дріб, що утворився, на числовому промені.
2
3
са
0
1
од

Показать ответ
Ответ:
Schoollolo
Schoollolo
16.01.2020 22:37
В левой части 10*0,2^(1-х)=10*0,2*(1/5)^(-х)=2*5^х. В правой части 0,04^(-х)=(1/25)^(-х)=25^х=5^(2х) Делаем замену 5^x=y Должно быть х > 0, значит у >1 Получаем |2y-a|-|y+2a|=y^2 Получили квадратное уравнение, у которого должно быть два положительных корня. D>0, a=1 y1=(-b-sqrt(D))/2; y2=(-b+sqrt(D))/2 Ясно, что y2>y1, поэтому достаточно решить неравенство -b - sqrt(D) > 1 Проверяем разные варианты 1) Если 2y-a<0 и y+2a<0, то a-2y-(-y-2a)=y^2 3a-y=y^2 y^2+y-3a=0 D=1+12a y1=(-1 - sqrt(1+12а))/2<0 при любом а Этот вариант не подходит. 2) Если 2y-a>0 и y+2a<0, то 2y-a-(-y-2a)=y^2 3y+a=y^2 y^2-3y-a=0 D=9+4a >= 0 a >= -9/4 y1=(3-sqrt(9+4a))/2>1 sqrt(9+4a)<1 9+4a<1 a<-2, но a>=-9/4 Решение: a € [-9/4; -2) 3) Если 2y-a<0 и y+2a>0, то -2y+a-(y-2a)=y^2 -3y+3a=y^2 y^2+3y-3a=0 D=9+12a y1=(-3-sqrt(9+12a))/2<0 при любом а Этот вариант нам не подходит. 4) Если 2y-a>0 и y+2a>0, то 2y-a-(y+2a)=y^2 y-3a=y^2 y^2-y+3a=0 D=1-12a >=0 a <= 1/12 y1=(1-sqrt(1-12a))/2 >1 sqrt(1-12a)<-1 Решений нет ответ: а € [-9/4; -2)
0,0(0 оценок)
Ответ:
alkatrasnoob
alkatrasnoob
25.12.2021 23:49
В 4 годах содержится 365*3+366=1461 день.
За это время 29 февраля наступает только 1 раз.
Поэтому вероятность одному человеку родиться 29 февраля
равна 1/1461.
Далее используем распределениеПуассона:

P_{n}(m)= \frac{\lambda ^{m}}{m!} \cdot e^{-\lambda }\; ,\; \lambda =np\; ,\; p\to 0\\\\p=\frac{1}{1461}\; ,\; \lambda =1700\cdot \frac{1}{1461}\approx 1,1636\\\\P_{100}(3)\approx \frac{(1,1636)^3}{3!} \cdot (2,7183)^{-1,1636}\approx \\\\\approx 0,2626\cdot 0,3124\approx 0,0820\approx 0,08=8\%

P.S.  Более точный ответ получают, если считать вероятность рождения 29 февраля для одного человека, высчитывая эту вероятность не за 4 года, а за 400 лет . За 400 лет общее количество дней составит 146097, а количество дней 29 февраля - 97, и вероятность родиться 29 февраля = 97/146097. Но в ответе при округлении до сотых всё равно получится 0,08.
0,0(0 оценок)
Популярные вопросы: Математика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота