В
Все
М
Математика
О
ОБЖ
У
Українська мова
Х
Химия
Д
Другие предметы
Н
Немецкий язык
Б
Беларуская мова
М
Музыка
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
У
Українська література
Р
Русский язык
Ф
Французский язык
П
Психология
О
Обществознание
А
Алгебра
М
МХК
Г
География
И
Информатика
П
Право
А
Английский язык
Г
Геометрия
Қ
Қазақ тiлi
Л
Литература
И
История
lolaaaaa2
lolaaaaa2
18.08.2022 01:13 •  Математика

У гострокутному трикутнику МNP
Кут Р=45°, МN=4√2cм, NP=4√3cм.
Знайдіть кут М трикутника МNP

Показать ответ
Ответ:
xxxxxxxx13
xxxxxxxx13
21.09.2021 02:52
Решим задачу
методом подбора)

Бабушке 51 год, а внуку 1 год.
Условие 1: 51÷3=17 лет - минимальный возраст внука. Через 17 лет бабушке исполнится 67 лет (разница между возрастом бабушки и внука 51-1=50 лет).
Условие 2: Нам нужно найти число больше 67 и кратное 3, которое при делении на 3 соответствовало бы возрасту внука с учётом лет (кратность 3: сумма чисел определённого числа должна делиться на 3). 

возраст бабушки:            69,  72,  75
результат деления на 3: 23,  24,  25  
количество лет:              18,  21,   24
возраст внука:                19,  22,   25
Через 24 года, когда внуку исполнится 25, а бабушке будет 75 - её возраст будет в 3 р. больше внука: 75:3=25

ОТВЕТ: бабушка будет в 3 раза старше внука через 24 года.

или
Пусть х - количество лет, когда бабушка будет старше внука в 3 раза. Составим и решим уравнение:
51+х=3×(1+х)
51+х=3+3х
х-3х=3-51
-2х=-48
2х=48
х=24
ОТВЕТ: через 24 года бабушка будет в 3 раза старше внука
0,0(0 оценок)
Ответ:
nikita1197
nikita1197
28.08.2020 18:03
ответ:функция не является непрерывной, в точках 1 и 2 она терпит разрывы второго родаПошаговое объяснение:Здесь единственные "плохие случаи" - это деление на 0. такое происходит при х = 2 или при х = 1f(x)=\dfrac{e^{\dfrac1{1-x}}}{x-2}1. Рассмотрим точку 1

1. Тут явно разрыв, так как функция не определена

2. Вычислим односторонние пределы

\displaystyle \lim_{x\to1-0}\dfrac{e^{\dfrac1{1-x}}}{x-2}=\lim_{x\to1-0}\dfrac1{x-2}\cdot\lim_{x\to1-0}e^{\dfrac1{1-x}}}=-\lim_{x\to1-0}e^{\dfrac1{1-x}}}=-\bigg(e^{\dfrac10}\bigg)=-\infty

\displaystyle \lim_{x\to1+0}\dfrac{e^{\dfrac1{1-x}}}{x-2}=\lim_{x\to1+0}\dfrac1{x-2}\cdot\lim_{x\to1+0}e^{\dfrac1{1-x}}}=1

То есть функция сначала ушла в -∞ а затем резко появилась в 1

это разрыв второго рода

2. Рассмотрим точку 2

1. Тут опять разрыв, смотрим какой

2. Вычислим односторонние пределы

\displaystyle \lim_{x\to2-0}\dfrac{e^{\dfrac1{1-x}}}{x-2}=\lim_{x\to2-0}\dfrac{1}{x-2}\lim_{x\to2-0}e^{\dfrac1{1-x}}=-\infty

\displaystyle \lim_{x\to2+0}\dfrac{e^{\dfrac1{1-x}}}{x-2}=\lim_{x\to2+0}\dfrac{1}{x-2}\lim_{x\to2+0}e^{\dfrac1{1-x}}=+\infty

То есть функция сначала уходит в -∞ а потом выходит из +∞

В этой точке тоже разрыв второго рода

0,0(0 оценок)
Популярные вопросы: Математика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота