№3.
АВ = ВС, значит ∆АВС - равнобедренный с основанием АС.
<ВМС = 90 ° , значит ВМ - высота, которая в равнобедренном ∆ считается также биссектрисой, а значит <МВС = <АВМ = 20°
<С = <А = 180° - 90° - 20° = 70°
<В = 20° * 2 = 40°
ответ: 70° , 70° , 40°
№4. <FNL = <FNM = 90°(L нужно подрисовать между b и N)
а||б, значит МК - секущая, значит <FKM = <КМN , как внутренние накрест лежащие.
< MON = 180° - <FNM - <KMN = 180° - 90° - 40° = 50°
ответ: 90°, 40°, 50°
№5. Док-во :
ВД - биссектриса < В, значит <АВД = <СВД.
<ВСД = <ВАД = 90°
ВД - общая сторона, значит ∆АВД = ∆СВД по || признаку (по двум углам и стороне между ними)
ч.т.д (что и требовалось доказать)
№6. ОД = СF
CD - общая сторона
<СОД = <СFE = 90°, значит
∆СОД = ∆СFE по | признаку (по двум сторонам и углу между ними)
ч.т.д
а)ε= √21/5 ; A(–5;0)
a=5
ε=c/a
c=ε·a=√21
b2=a2–c2=25–21=4
О т в е т.
(x2/25)+(y2/4)=1
б)A (√80;3) ,B(4 √6 ;3 √2)
Каноническое уравнение гиперболы
(x2/a2)–(y2/b2)=1
чтобы найти а и b подставляем координаты точек А и В:
{(80/a2)–(9/b2)=1
{(96/a2)–(18/b2)=1
Умножаем первое уравнение на (–2):
{–(160/a2)+(18/b2)=–2
Складываем
–64/a2=–1
a2=64
18/b2=(96/a2)–1
b2=36
О т в е т. (x2/64)–(y2/36)=1
в)D: y=1
если каноническое уравнение параболы имеет вид
x2=–2py, то фокус параболы
F(0;–p/2)
D: y=p/2
Значит,
p/2=1
p=2
О т в е т. x2=–4y
Пошаговое объяснение:
№3.
АВ = ВС, значит ∆АВС - равнобедренный с основанием АС.
<ВМС = 90 ° , значит ВМ - высота, которая в равнобедренном ∆ считается также биссектрисой, а значит <МВС = <АВМ = 20°
<С = <А = 180° - 90° - 20° = 70°
<В = 20° * 2 = 40°
ответ: 70° , 70° , 40°
№4. <FNL = <FNM = 90°(L нужно подрисовать между b и N)
а||б, значит МК - секущая, значит <FKM = <КМN , как внутренние накрест лежащие.
< MON = 180° - <FNM - <KMN = 180° - 90° - 40° = 50°
ответ: 90°, 40°, 50°
№5. Док-во :
ВД - биссектриса < В, значит <АВД = <СВД.
<ВСД = <ВАД = 90°
ВД - общая сторона, значит ∆АВД = ∆СВД по || признаку (по двум углам и стороне между ними)
ч.т.д (что и требовалось доказать)
№6. ОД = СF
CD - общая сторона
<СОД = <СFE = 90°, значит
∆СОД = ∆СFE по | признаку (по двум сторонам и углу между ними)
ч.т.д
а)ε= √21/5 ; A(–5;0)
a=5
ε=c/a
c=ε·a=√21
b2=a2–c2=25–21=4
О т в е т.
(x2/25)+(y2/4)=1
б)A (√80;3) ,B(4 √6 ;3 √2)
Каноническое уравнение гиперболы
(x2/a2)–(y2/b2)=1
чтобы найти а и b подставляем координаты точек А и В:
{(80/a2)–(9/b2)=1
{(96/a2)–(18/b2)=1
Умножаем первое уравнение на (–2):
{–(160/a2)+(18/b2)=–2
{(96/a2)–(18/b2)=1
Складываем
–64/a2=–1
a2=64
18/b2=(96/a2)–1
b2=36
О т в е т. (x2/64)–(y2/36)=1
в)D: y=1
если каноническое уравнение параболы имеет вид
x2=–2py, то фокус параболы
F(0;–p/2)
D: y=p/2
Значит,
p/2=1
p=2
О т в е т. x2=–4y
Пошаговое объяснение: