А) 2; 2 3/14; 9 5/9; 1 5/53; 1 6/7; 1 7/38;
1 7/12; 6 7/9; 13; 2 5/16; 1 4/31; 7; 2;
3 7/22; 1 8/27.
Б) 2 8/33; 1 7/12; 4; 7 8/9; 1 11/48; 11;
8 5/8; 2 6/19; 1 7/40; 1 5/17; 1 5/32;
1 7/116; 7; 3 8/15; 3 6/7.
Пошаговое объяснение:
Делим числитель на знаменатель, выделяем целую часть, остаток записываем в числитель, знаменатель остается тот же.
А) 22/11=2; 31/14=2 3/14; 86/9=9 5/9;
58/53=1 5/53; 13/7=1 6/7; 45/38=1 7/38;
19/12=1 7/12; 61/9=6 7/9; 39/3=13; 37/16=2 5/16; 35/31=1 4/31; 49/7=7;
12/6=2; 73/22=3 7/22; 35/27=1 8/27;
Б) 74/33=2 8/33; 19/12=1 7/12; 8/2=4;
71/9=7 8/9; 59/48=1 11/48; 33/3=11;
69/8=8 5/8; 44/19=2 6/19; 47/40=1 7/40;
22/17=1 5/17; 37/32=1 5/32;
123/116=1 7/116; 63/9=7; 53/15=3 8/15;
27/7=3 6/7
Я докажу первое и последнее, остальное - сам.
1)
Доказательство "⇒".
Пусть у нас дано ((A∪B)⊂C), докажем тогда, что
1.1) A⊂C,
и
1.2) B⊂C.
1.1) x∈A⊂A∪B, ⇒ x∈A∪B⊂С, ⇒ x∈C. То есть A⊂C.
1.2) x∈B⊂A∪B, ⇒ x∈A∪B⊂C, ⇒ x∈C. То есть B⊂C.
чтд.
Доказательство "<=".
Пусть у нас дано: A⊂C и B⊂C. Докажем тогда, что
A∪B⊂C.
Пусть x∈A∪B, ⇔ x∈A или x∈B.
a) x∈A⊂C, ⇒ x∈C.
б) x∈B⊂C, ⇒ x∈C.
То есть A∪B⊂C.
4)
Пусть у нас дано (A⊂(B∪C)). Докажем тогда, что
Пусть , ⇔ и , ⇔
Тогда т.к. A⊂B∪C, имеем
Первый случай. Если x∈B и x∉B, то x∈∅⊂C ⇒ x∈C.
Второй случай. Если x∈C и x∉B, то x∈C\B⊂C, ⇒ x∈C.
Пусть у нас дано , докажем тогда, что
A⊂ B∪C.
Пусть x∈A. Тут возможны два варианта x∈B, либо x∉B.
Случай первый: x∈A и x∈B, ⇒ x∈A∩B⊂B, ⇒ x∈B⊂B∪C, ⇒ x∈B∪C.
Случай второй: x∈A и x∉B, ⇒ и , ⇒
⇒ , ⇒ x∈C⊂B∪C, ⇒ x∈B∪C.
А) 2; 2 3/14; 9 5/9; 1 5/53; 1 6/7; 1 7/38;
1 7/12; 6 7/9; 13; 2 5/16; 1 4/31; 7; 2;
3 7/22; 1 8/27.
Б) 2 8/33; 1 7/12; 4; 7 8/9; 1 11/48; 11;
8 5/8; 2 6/19; 1 7/40; 1 5/17; 1 5/32;
1 7/116; 7; 3 8/15; 3 6/7.
Пошаговое объяснение:
Делим числитель на знаменатель, выделяем целую часть, остаток записываем в числитель, знаменатель остается тот же.
А) 22/11=2; 31/14=2 3/14; 86/9=9 5/9;
58/53=1 5/53; 13/7=1 6/7; 45/38=1 7/38;
19/12=1 7/12; 61/9=6 7/9; 39/3=13; 37/16=2 5/16; 35/31=1 4/31; 49/7=7;
12/6=2; 73/22=3 7/22; 35/27=1 8/27;
Б) 74/33=2 8/33; 19/12=1 7/12; 8/2=4;
71/9=7 8/9; 59/48=1 11/48; 33/3=11;
69/8=8 5/8; 44/19=2 6/19; 47/40=1 7/40;
22/17=1 5/17; 37/32=1 5/32;
123/116=1 7/116; 63/9=7; 53/15=3 8/15;
27/7=3 6/7
Я докажу первое и последнее, остальное - сам.
1)
Доказательство "⇒".
Пусть у нас дано ((A∪B)⊂C), докажем тогда, что
1.1) A⊂C,
и
1.2) B⊂C.
1.1) x∈A⊂A∪B, ⇒ x∈A∪B⊂С, ⇒ x∈C. То есть A⊂C.
1.2) x∈B⊂A∪B, ⇒ x∈A∪B⊂C, ⇒ x∈C. То есть B⊂C.
чтд.
Доказательство "<=".
Пусть у нас дано: A⊂C и B⊂C. Докажем тогда, что
A∪B⊂C.
Пусть x∈A∪B, ⇔ x∈A или x∈B.
a) x∈A⊂C, ⇒ x∈C.
б) x∈B⊂C, ⇒ x∈C.
То есть A∪B⊂C.
чтд.
4)
Доказательство "⇒".
Пусть у нас дано (A⊂(B∪C)). Докажем тогда, что
Пусть , ⇔ и , ⇔
и
Тогда т.к. A⊂B∪C, имеем
и
Первый случай. Если x∈B и x∉B, то x∈∅⊂C ⇒ x∈C.
Второй случай. Если x∈C и x∉B, то x∈C\B⊂C, ⇒ x∈C.
чтд.
Доказательство "<=".
Пусть у нас дано , докажем тогда, что
A⊂ B∪C.
Пусть x∈A. Тут возможны два варианта x∈B, либо x∉B.
Случай первый: x∈A и x∈B, ⇒ x∈A∩B⊂B, ⇒ x∈B⊂B∪C, ⇒ x∈B∪C.
Случай второй: x∈A и x∉B, ⇒ и , ⇒
⇒ , ⇒ x∈C⊂B∪C, ⇒ x∈B∪C.
чтд.