у меня на следующей странице, а как сделать 2 фотки я не знаю)
обозначена буквой "X" число фазанов, а буквой "Y"-число кроликов.Тогда можно составить математическую модель задачи-уравнение 2"Х" + 4"У"=34.Это уравнение с двумя неизвестными можно решить подбором, подставляя вместо "Х" и "У" натуральные числа, сумма которых равна 12.Если вы решили задачу одним из описанных выше Попробуйте решите её, составив уравнение с одним неизвестным. Какой из решений вам больше нравится?
В скобке правой части сумма арифметической прогрессии с разностью, равной 1 и первым членом 1, ее сумма равна (1+n)*n/2, поскольку скобка справа в квадрате, то (1 + 2 + ... + n)²= ((1+n)*n/2)²= (1+n)²*n²/4, значит, нужно доказать, что 1³ + 2³ + ... + n³ = (1+n)²*n²/4, 1. Берем n=1 /база/, проверяем справедливость равенства.1³=2²*1²/4=1 2. Предполагаем, что для n=к равенство выполняется. т.е. 1³ + 2³ + ... + к³ = (1+к)²*к²/4 3. Докажем, что для n= к+1 равенство выполняется. т.е., что 1³ + 2³ + ... + (к+1)³ = (1+к)²*(2+к)²/4 (1³ + 2³ + ... к³)+ (к+1)³ =(1+к)²*к²/4+ (к+1)³=(к+1)²*(к²+4к+4)/4=(1+к)²*(2+к)²/4
1). Удовлетворительные оценки имеют 3+2+5+6=16 человек, что соответствует условию. 2) Хорошие оценки имеют 13 человек, но в расчёт берём только тех, кто имеет отличные и хорошие и только хорошие оценки, так как те, кто при этом имеет и удовлетворительные оценки,уже учтены выше - их 2+5=7 чел. Тех, кто имеет только хорошие, а также отличные и хорошие оценки - 4+2=6 чел. Всего же имеющих хорошие оценки 6+7=13 чел.- что соответствует условию. 3) Отличные оценки имеют 12 человек, но так как по условию никто не имеет только отличных оценок, то все эти 12 человек уже учтены среди имеющих удовлетворительные и хорошие оценки (их 4+3+5=12 человек, что опять же соответствует условию). Так как по условию в классе 1 ученик оценок не имеет, то всего в классе 16+6+1=23 ученика. ответ: 23.
(1+n)²*n²/4, значит, нужно доказать, что 1³ + 2³ + ... + n³ = (1+n)²*n²/4,
1. Берем n=1 /база/, проверяем справедливость равенства.1³=2²*1²/4=1
2. Предполагаем, что для n=к равенство выполняется.
т.е. 1³ + 2³ + ... + к³ = (1+к)²*к²/4
3. Докажем, что для n= к+1 равенство выполняется. т.е., что
1³ + 2³ + ... + (к+1)³ = (1+к)²*(2+к)²/4
(1³ + 2³ + ... к³)+ (к+1)³ =(1+к)²*к²/4+ (к+1)³=(к+1)²*(к²+4к+4)/4=(1+к)²*(2+к)²/4
Вот доказательство математической индукцией
2) Хорошие оценки имеют 13 человек, но в расчёт берём только тех, кто имеет отличные и хорошие и только хорошие оценки, так как те, кто при этом имеет и удовлетворительные оценки,уже учтены выше - их 2+5=7 чел. Тех, кто имеет только хорошие, а также отличные и хорошие оценки - 4+2=6 чел. Всего же имеющих хорошие оценки 6+7=13 чел.- что соответствует условию.
3) Отличные оценки имеют 12 человек, но так как по условию никто не имеет только отличных оценок, то все эти 12 человек уже учтены среди имеющих удовлетворительные и хорошие оценки (их 4+3+5=12 человек, что опять же соответствует условию).
Так как по условию в классе 1 ученик оценок не имеет, то всего в классе 16+6+1=23 ученика. ответ: 23.