У МЕНЯ ОЛИМПИАДА В круговом турнире, где каждый участник турнира играет с каждым ровно один раз, приняли участие 17 шахматистов. Чему равно наименьшее значение суммы очков четырех участников, занявшие с 14 по 17 места? (В турнире по шахматам за победу дают 1 очко, за ничью 0,5 очков, за поражение – 0 очков.)
10 очков
2 очка
12 очков
4 очка
20 очков
Подкоренное выражение не должно быть меньше нуля и х не может быть равным нулю
Решим уравнение
Очевидно, что надо решить верхнюю часть (нижнее дает нам ограничение что х не может быть равен 0)
То есть решение х=-1
Проверим участок до -1, возьмем к примеру х=-2
(-2+1)/(-2)=0,5 >0
То есть этот участок годен.
Теперь возьмем значение со второго участка х>0, например х=1:
(1+1) /1=2 >0
Тоже годен
Остался участок от -1 до 0Возьмем к примеру -0,5
(-0,5+1)/(-0,5)=0,5/(-0,5)=-1
То есть участок не годен. И помним что
Сначала выпишем все 2-х значные числа, которые делятся на 17 и на 23.
На 17: 17, 34, 51, 68, 85.
На 23: 23, 46, 69, 92.
Начнем составлять возможные концовки чисел:
6
68
685
6851
68517 - дальше никакую цифру всунуть нельзя.
6 - такое уже было.
69
692
6923
69234
692346 - но это то же самое, что просто 6, т. к., если двигаться влево, то мы получим последовательность из цифр ...692346923469234... до нужного нам кол-ва.
И того получается, что у нас выйдут такие числа.
...69234692346
...692346923468
...6923469234685
...69234692346851
...692346923468517
...692346923469
...6923469234692
...69234692346923
...692346923469234
9 чисел. Кстати, тут неважно 2013-значное оно или какое-то другое. Одинаковое кол-во получится и с 5-значным и с 1000000-значным.