У паралелограмі ABCD висота BC ділить сторону AD навпіл. Обчислити сторону BC, якщо периметр паралелограма дорівнює 14 см, а периметр трикутника ABD дорівнює 10.
Наибольший результат получим, если числа KAN и GA будет как можно больше, а число ROO как можно меньше.
Начнем с чисел KAN и GA: K=9 как цифра в самом старшем разряде. Далее цифрам А и G необходимо присвоить значения 8 и 7, причем именно в таком порядке, поскольку А встретится еще раз в разряде единиц, поэтому нам выгодно присвоить ей наибольшее значение. Последняя цифра N=6.
Для числа ROO поступим наоборот: старшем разряду присвоим наименьшее возможное значение: R=1, далее O=2.
P(x;y)dx+Q(x;y)dy
является полным дифференциалом, если
∂P/∂y=∂Q/∂x.
∂P/∂y=((x+y)/(xy))`y=((x+y)`y·(xy)–(xy)`y·(x+y))/(xy)2= –x2/(xy)2= – 1/y2
∂Q/∂x=(1/y2)·(y–x)`x=(1/y2)·(–1)=–1/y2
∂P/∂y=∂Q/∂x
Данное уравнение – уравнение в полных дифференциалах
Это значит
∂U/∂x=P(x;y)
∂U/∂y=Q(x;y)
Зная, частные производные можем найти U(x;y)
U(x;y)= ∫ (∂U/∂x)dx= ∫ P(x;y)dx= ∫ (x+y)dx/(xy)=
=(1/y) ∫ (x+y)dx/x=(1/y) ∫ (1+(y/x))dx=(1/y)·x+(1/y)·yln|x|+ φ (y)=
=(x/y)+ln|x|+ φ(y)
Находим
∂U/∂y= ((x/y)+ln|x|+ φ(y))`y=x·(1/y)`+0+ φ `(y)= (–x/y2)+φ `(y)
Так как
∂U/∂y=Q(x;y)
то
(–x/y2)+φ `(y) =(y–x)/y2;
⇒
φ `(y)=1/y
φ(y)=ln|y|+C
U(x;y)=(x/y)+ln|x|+ φ(y)=(x/y)+ln|x|+ln|y|+C
О т в е т.U(x;y)=(x/y)+ln|x·y|+C
Наибольший результат получим, если числа KAN и GA будет как можно больше, а число ROO как можно меньше.
Начнем с чисел KAN и GA: K=9 как цифра в самом старшем разряде. Далее цифрам А и G необходимо присвоить значения 8 и 7, причем именно в таком порядке, поскольку А встретится еще раз в разряде единиц, поэтому нам выгодно присвоить ей наибольшее значение. Последняя цифра N=6.
Для числа ROO поступим наоборот: старшем разряду присвоим наименьшее возможное значение: R=1, далее O=2.
Итого: 986+78-122=942
ответ: 942