Разложим числа на простые множители и подчеркнем общие множители чисел:
27 = 3 · 3 · 3
18 = 2 · 3 · 3
Общие множители чисел: 3; 3
Чтобы найти НОД чисел, необходимо перемножить их общие множители:
НОД (27; 18) = 3 · 3 = 9
Разложим числа на простые множители. Сначала запишем разложение на множители самого большого число, затем меньшее число. Подчеркнем в разложении меньшего числа множители, которые не вошли в разложение наибольшего числа.
75 = 3 · 5 · 5
60 = 2 · 2 · 3 · 5
Чтобы определить НОК, необходимо недостающие множители (эти множители подчеркнуты) добавить к множителям большего числа и перемножить их:
Кубическое уравнение имеет вид ax3+bx2+cx+d=0, где переменная обязательно должна присутствовать в третьей степени. Если переменная x отсутствует для второй или первой степени, то эти коэффициенты приравниваются к нулю.
Для решения кубического уравнения существует теорема Виета-Кардана, которая предлагает ряд формул, через которые вычисляется количество и значения корней уравнения не только на множестве действительных чисел, но и включая комплексные числа. По теореме Виета-Кардана, нужно рассчитать следующие параметры.
НОД (27,18) = 9
НОК (75,60) = 300
Пошаговое объяснение:
Разложим числа на простые множители и подчеркнем общие множители чисел:
27 = 3 · 3 · 3
18 = 2 · 3 · 3
Общие множители чисел: 3; 3
Чтобы найти НОД чисел, необходимо перемножить их общие множители:
НОД (27; 18) = 3 · 3 = 9
Разложим числа на простые множители. Сначала запишем разложение на множители самого большого число, затем меньшее число. Подчеркнем в разложении меньшего числа множители, которые не вошли в разложение наибольшего числа.
75 = 3 · 5 · 5
60 = 2 · 2 · 3 · 5
Чтобы определить НОК, необходимо недостающие множители (эти множители подчеркнуты) добавить к множителям большего числа и перемножить их:
НОК (75; 60) = 3 · 5 · 5 · 2 · 2 = 300
Пошаговое объяснение:
Кубическое уравнение имеет вид ax3+bx2+cx+d=0, где переменная обязательно должна присутствовать в третьей степени. Если переменная x отсутствует для второй или первой степени, то эти коэффициенты приравниваются к нулю.
Для решения кубического уравнения существует теорема Виета-Кардана, которая предлагает ряд формул, через которые вычисляется количество и значения корней уравнения не только на множестве действительных чисел, но и включая комплексные числа. По теореме Виета-Кардана, нужно рассчитать следующие параметры.
вот формулы вычисляй.