Вычисляем определитель матрицы 3×3:
∆ =
5 3 3
2 6 -3
8 -3 2
= 5·6·2 + 3·(-3)·8 + 3·2·(-3) - 3·6·8 - 5·(-3)·(-3) - 3·2·2 = 60 - 72 - 18 - 144 - 45 - 12 = -231.
Находим определители:
∆1 =
48 3 3
18 6 -3
21 -3 2
= 48·6·2 + 3·(-3)·21 + 3·18·(-3) - 3·6·21 - 48·(-3)·(-3) - 3·18·2 = 576 - 189 - 162 -
- 378 - 432 - 108 = -693.
∆2 =
5 48 3
2 18 -3
8 21 2
= 5·18·2 + 48·(-3)·8 + 3·2·21 - 3·18·8 - 5·(-3)·21 - 48·2·2 = 180 - 1152 + 126 - 432 + 315 - 192 = -1155.
∆3 =
5 3 48
2 6 18
8 -3 21
= 5·6·21 + 3·18·8 + 48·2·(-3) - 48·6·8 - 5·18·(-3) - 3·2·21 = 630 + 432 - 288 - 2304 + 270 - 126 = -1386.
x = ∆1 / ∆ = -693 / -231 = 3.
y = ∆2 / ∆ = -1155 / -231 = 5.
z = ∆3 / ∆ = -1386 / -231 = 6.
Вычисляем определитель матрицы 3×3:
∆ =
5 3 3
2 6 -3
8 -3 2
= 5·6·2 + 3·(-3)·8 + 3·2·(-3) - 3·6·8 - 5·(-3)·(-3) - 3·2·2 = 60 - 72 - 18 - 144 - 45 - 12 = -231.
Находим определители:
∆1 =
48 3 3
18 6 -3
21 -3 2
= 48·6·2 + 3·(-3)·21 + 3·18·(-3) - 3·6·21 - 48·(-3)·(-3) - 3·18·2 = 576 - 189 - 162 -
- 378 - 432 - 108 = -693.
∆2 =
5 48 3
2 18 -3
8 21 2
= 5·18·2 + 48·(-3)·8 + 3·2·21 - 3·18·8 - 5·(-3)·21 - 48·2·2 = 180 - 1152 + 126 - 432 + 315 - 192 = -1155.
∆3 =
5 3 48
2 6 18
8 -3 21
= 5·6·21 + 3·18·8 + 48·2·(-3) - 48·6·8 - 5·18·(-3) - 3·2·21 = 630 + 432 - 288 - 2304 + 270 - 126 = -1386.
x = ∆1 / ∆ = -693 / -231 = 3.
y = ∆2 / ∆ = -1155 / -231 = 5.
z = ∆3 / ∆ = -1386 / -231 = 6.
1 + 4 = 5 частей в числе 125
125 : 5 · 1 = 25
125 : 5 * 4 = 100
ответ: 25 : 100
2) Раздели число 30 в отношении 2:1:3
2 + 1 + 3 = 6 частей в числе 30
30 : 6 · 2 = 10
30 : 6 * 1 = 5
30 : 6 * 3 = 15
ответ: 10 : 5 : 15
3) Раздели число 0,375 в отношении 1:11:13.
1 + 11 + 13 = 25 частей в числе 0,375
0,375 : 25 · 1 = 0,015
0,375 : 25 * 11 = 0,165
0,375 : 25 * 13 = 0,195
ответ: 0,015 : 0,165 : 0,195
4) Разделите дробь 2,1/3 в отношении 3:4:7.
3 + 4 + 7 = 14 частей в числе 2, 1/3
7/3 : 14 · 3 = 1/2
7/3 : 14 * 4 = 4/6 = 2/3
7/3 : 14 * 7 = 7/6 = 1, 1/6
ответ: 1/2 : 2/3 : 1, 1/6