Обозначим искомый интеграл через I. Пусть I1, I2, I3 - интегралы соответственно по прямым АС, ВС и ВА, тогда I=I1+I2+I3.
1) найдём I1. Пишем уравнение прямой АС: y=2-1/2*x. Отсюда y²=1/4*x²-2*x+4, dy=-1/2*dx. Тогда I1=F1(2)-F1(0)+F2(2)-F2(0), где F1(x)=∫dx/(2-1/2*x) и F2(x)=∫1/2*dx/(1/4*x²-2*x+4). Умножая числитель и знаменатель подынтегрального выражения для F1(x) на 2, а для F2(x) - на 4, получим: F1(x)=2*∫dx/(4-x)=-2*∫d(x-4)/(x-4), F2(x)=2*∫x*dx/(x²-8*x+16)=2*∫x*dx/(x-4)². Полагая в выражении для F2(x) x-4=t и учитывая, что dx=dt, получим I1=F1(2)-F1(0)+F(-2)-F(-4), где F(t)=2*∫(t+4)*dt/t². Отсюда F1(x)=-2*ln/x-4/, F(t)=2*ln/t/-8/t и тогда I1=-2*ln/-2/+2*ln/-4/+2*ln/-2/+8/2-2*ln/-4/-8/4=4-2=2.
2) найдём I2. Уравнение прямой ВС имеет вид: x=2. Так как x=const, то dx=0 и тогда I2=F(2)-F(1), где F(y)=-∫2*dy/y²=2/y. Отсюда I2=2/2-2/1=-1.
3) найдём I3. Уравнение прямой АС имеет вид: y=2. Так как y=const, то dy=0 и тогда I3=F(0)-F(2), где F(x)=∫dx/2=1/2*x. Отсюда I3=0-1=-1.
Отсюда I=2+(-1)+(-1)=0. Это и следовало ожидать, так как криволинейный интеграл по замкнутому контуру В ДАННОМ СЛУЧАЕ должен быть равным нулю, потому что подынтегральное выражение представляет собой полный дифференциал du некоторой функции u(x,y). В самом деле, так как d/dy(1/y)=-1/y²=d/dx(-x/y²)=-1/y², то подынтегральное выражение действительно есть полный дифференциал.
ответ: 0.
Пошаговое объяснение:
Обозначим искомый интеграл через I. Пусть I1, I2, I3 - интегралы соответственно по прямым АС, ВС и ВА, тогда I=I1+I2+I3.
1) найдём I1. Пишем уравнение прямой АС: y=2-1/2*x. Отсюда y²=1/4*x²-2*x+4, dy=-1/2*dx. Тогда I1=F1(2)-F1(0)+F2(2)-F2(0), где F1(x)=∫dx/(2-1/2*x) и F2(x)=∫1/2*dx/(1/4*x²-2*x+4). Умножая числитель и знаменатель подынтегрального выражения для F1(x) на 2, а для F2(x) - на 4, получим: F1(x)=2*∫dx/(4-x)=-2*∫d(x-4)/(x-4), F2(x)=2*∫x*dx/(x²-8*x+16)=2*∫x*dx/(x-4)². Полагая в выражении для F2(x) x-4=t и учитывая, что dx=dt, получим I1=F1(2)-F1(0)+F(-2)-F(-4), где F(t)=2*∫(t+4)*dt/t². Отсюда F1(x)=-2*ln/x-4/, F(t)=2*ln/t/-8/t и тогда I1=-2*ln/-2/+2*ln/-4/+2*ln/-2/+8/2-2*ln/-4/-8/4=4-2=2.
2) найдём I2. Уравнение прямой ВС имеет вид: x=2. Так как x=const, то dx=0 и тогда I2=F(2)-F(1), где F(y)=-∫2*dy/y²=2/y. Отсюда I2=2/2-2/1=-1.
3) найдём I3. Уравнение прямой АС имеет вид: y=2. Так как y=const, то dy=0 и тогда I3=F(0)-F(2), где F(x)=∫dx/2=1/2*x. Отсюда I3=0-1=-1.
Отсюда I=2+(-1)+(-1)=0. Это и следовало ожидать, так как криволинейный интеграл по замкнутому контуру В ДАННОМ СЛУЧАЕ должен быть равным нулю, потому что подынтегральное выражение представляет собой полный дифференциал du некоторой функции u(x,y). В самом деле, так как d/dy(1/y)=-1/y²=d/dx(-x/y²)=-1/y², то подынтегральное выражение действительно есть полный дифференциал.
3) 150 км
4) 170 см²
Пошаговое объяснение:
3. Решить задачу:
Дано:
V автобуса в одном направление - 50 км/ч
V автомобиля в одном направление - ? км/ч, но в 2 раза больше V автобуса
Найти:
На сколько км автобус отстанет от автомобиле через 3 ч - ? км
(Сразу можно понять, что автомобиль проедет в 2 раза больше расстояния чем автобус, т. к. у него V в 2 раза больше)
1) 50 · 2 = 100 (км/ч) - V автомобиля
2) 50 · 3 = 150 (км) - Проедет автобус через 3 ч
3) 100 · 3 = 300 (км) - Проедет автомобиль через 3 ч
4) 300 - 150 = 150 (км) - На сколько км автобус отстанет через 3 ч
На 150 км
4.Решить задачу
S прямоугольника = 2 · (a + b)
Дано:
Длина - 68 см
Ширина - ? см, но составляет 1/4 часть длины
Найти:
S прямоугольника - ? см²
1) 68 : 4 · 1 = 17 (см) - Ширина прямоугольника
2) 2 · (68 + 17) = 170 (см²) - S прямоугольника
170 см²
Надеюсь