M=2; m=-2
Пошаговое объяснение:
Скорее всего в этом задании нужно было бы найти наибольшее и наименьшее значение функции y=x³-3x²+2 на отрезке [-1; 1].
Находим производную и приравниваем её к нулю:
3x²-6x=0; 3x(x-2)=0; x₁=0; x-2=0; x₂=2
Выбираем критические точки, принадлежащие отрезку [-1; 1]:
x₁∈[-1; 1]; x₂∉[-1; 1]
Вычисляем значение функции f(x) в критической точке и на концах интервала [-1; 1]:
y(-1)=(-1)³-3·(-1)²+2=-1-3+2=-2
y(0)=0³-3·0²+2=2
y(1)=1³-3·1²+2=1-3+2=0
Среди полученных значений наибольшее M=2, наименьшее m=-2.
M=2; m=-2
Пошаговое объяснение:
Скорее всего в этом задании нужно было бы найти наибольшее и наименьшее значение функции y=x³-3x²+2 на отрезке [-1; 1].
Находим производную и приравниваем её к нулю:
3x²-6x=0; 3x(x-2)=0; x₁=0; x-2=0; x₂=2
Выбираем критические точки, принадлежащие отрезку [-1; 1]:
x₁∈[-1; 1]; x₂∉[-1; 1]
Вычисляем значение функции f(x) в критической точке и на концах интервала [-1; 1]:
y(-1)=(-1)³-3·(-1)²+2=-1-3+2=-2
y(0)=0³-3·0²+2=2
y(1)=1³-3·1²+2=1-3+2=0
Среди полученных значений наибольшее M=2, наименьшее m=-2.