А) Если прямоугольник является квадратом, то его диагонали взаимно перпендикулярны и делят углы пополам. Это верное утверждение. Его называют теоремой Обратное Если диагонали прямоугольника взаимно перпендикулярны и делят углы пополам, то этот прямоугольник - квадрат Это верное утверждение. Это тоже теорема Противоположное Если прямоугольник не является квадратом, то его диагонали не взаимно перпендикулярны и не делят углы пополам. Теорема. Обратное противоположному Если диагонали прямоугольника не взаимно перпендикулярны и не делят углы пополам, то этот прямоугольник - не квадрат. Теорема.
2)Всякий параллелограмм с равными диагоналями есть прямоугольник или квадрат. Верное. Теорема Обратное Если параллелограмм является прямоугольником или квадратом, то его диагонали равны. Верное. Теорема. Противоположное Если в параллелограмме диагонали не равны, то этот параллелограмм не прямоугольник и не квадрат. Теорема. Противоположное обратному Если параллелограмм не является прямоугольником или квадратом, то его диагонали не равны. Теорема.
По условию мы получаем четыре равнобедренных треугольника: АСF, СFЕ, FED, BDE. Углы при основании равнобедренного треугольника равны. Обозначим углы при основании в каждом указанном выше треугольнике соответственно как А, А1, А2, А3. Понятно, что угол А - это угол при основании исходного треугольника АВС, а угол А3 - это угол при его вершине. Найдем значение угла А3, последовательно выражая углы А1, А2, А3 через угол А. Как? Для примера. Угол А1 есть часть угла А, которая находится как разность угла А и угла АСD. Угол АСD при вершине равнобедренного треугольника АСD равен 180-2А. И так до конца, т.е до выражения угла А3 через А. Далее составляется уравнение: 2А+А3(выраженное через А)=180. Если все правильно выразите, то должно получиться 9А=360, т.е. А=40. Успехов, дерзайте!
Обратное
Если диагонали прямоугольника взаимно перпендикулярны и делят углы пополам, то этот прямоугольник - квадрат Это верное утверждение. Это тоже теорема
Противоположное
Если прямоугольник не является квадратом, то его диагонали не взаимно перпендикулярны и не делят углы пополам. Теорема.
Обратное противоположному
Если диагонали прямоугольника не взаимно перпендикулярны и не делят углы пополам, то этот прямоугольник - не квадрат. Теорема.
2)Всякий параллелограмм с равными диагоналями есть прямоугольник или квадрат. Верное. Теорема
Обратное
Если параллелограмм является прямоугольником или квадратом, то его диагонали равны. Верное. Теорема.
Противоположное
Если в параллелограмме диагонали не равны, то этот параллелограмм не прямоугольник и не квадрат. Теорема.
Противоположное обратному
Если параллелограмм не является прямоугольником или квадратом, то его диагонали не равны. Теорема.
Обозначим углы при основании в каждом указанном выше треугольнике соответственно как А, А1, А2, А3. Понятно, что угол А - это угол при основании исходного треугольника АВС, а угол А3 - это угол при его вершине.
Найдем значение угла А3, последовательно выражая углы А1, А2, А3 через угол А. Как?
Для примера. Угол А1 есть часть угла А, которая находится как разность угла А и угла АСD. Угол АСD при вершине равнобедренного треугольника АСD равен 180-2А.
И так до конца, т.е до выражения угла А3 через А.
Далее составляется уравнение: 2А+А3(выраженное через А)=180.
Если все правильно выразите, то должно получиться
9А=360, т.е. А=40.
Успехов, дерзайте!