Kx-4=x^2+3xkx-4-x^2-3x=0x^2+3x-kx+4=0x^2+(3-k)x+4=0нужна одна общая точка значит D=0D=(3-k)^2-4*4=(3-k)^2-4^2=(3-k-4)(3-k+4)=(-k-1)(-k+7)k=7 k=-1теперь подставляем. 7x-4=x^2+3x7x-4-x^2-3x=0x^2-4x+4=0D=0 x=2 7x-4=7*2-4=10 ответ (2.10)можно посторить график, а можно ситстемой решатьвот ситсемаy=kx-4y=x^2-3x значок системыkx-4=x^2-3xx^2-3x-kx+4=0 значок системыдорешиваем последнее уравнениеx^2-(3+k)x+4=0чтобы прямая и парабола имели одну общую точку, полученное уравнение (которое последнее во второй системе) должно иметть один корень, значи D=0D=(-(3+k))^2-4*4=(3+k)^2-4^2=(3+k-4)(3+k+4)=(k-1)(k+7)D=0, значит (k-1)(k+7)=0k^2+6k-7=0k1=7 k2=-1теперь подставляем k 1) 7x-4=x^2-3x x^2-10x+4=0 D1=25-4=21 x1,2=(5 + - корень из 21)2) -х-4=х^2-3х х^2-2x+4=0 D<0 корней нет
№1. Площадь боковой грани (прямоугольный треугольник равными с катетами по 10 см) S₁ = 10 * 10 : 2 = 50 (cm²) В правильной треугольной пирамиде - ТРИ равных боковых грани S = 3S₁ = 3 * 50 = 150 (cm²)
№2. Боковая грань усеченной пирамиды - равнобокая трапеция, с основаниями а = 1, b = 9 и боковой стороной c = 5. Высоты трапеции, проведенные от меньшего основания к большему, разбивают его на отрезки 4, 1, 4. В прямоугольном треугольнике с катетом а = 4 и гипотенузой с = 5 c² = a² + h² h² = 25 - 16 h² = 9 h = 3 - высота трапеции
Площадь трапеции = полусумме оснований * на высоту
S₁ = * h S₁ = * 3 S₁ = 15 Площадь боковой поверхности усеченной пирамиды - три одинаковых грани (трапеции) S = 3S₁ = 3 * 15 = 45 (cm²)
Площадь боковой грани (прямоугольный треугольник равными с катетами по 10 см)
S₁ = 10 * 10 : 2 = 50 (cm²)
В правильной треугольной пирамиде - ТРИ равных боковых грани
S = 3S₁ = 3 * 50 = 150 (cm²)
№2.
Боковая грань усеченной пирамиды - равнобокая трапеция, с основаниями а = 1, b = 9 и боковой стороной c = 5.
Высоты трапеции, проведенные от меньшего основания к большему, разбивают его на отрезки 4, 1, 4.
В прямоугольном треугольнике с катетом а = 4 и гипотенузой с = 5
c² = a² + h²
h² = 25 - 16
h² = 9
h = 3 - высота трапеции
Площадь трапеции = полусумме оснований * на высоту
S₁ = * h
S₁ = * 3
S₁ = 15
Площадь боковой поверхности усеченной пирамиды - три одинаковых грани (трапеции)
S = 3S₁ = 3 * 15 = 45 (cm²)