Вероятности того, что первые три детали будут бракованными, а две последующие - нет равна 6/17 * 5/16 * 4/15 * 11/14 * 10/13 ≈ 0,0178. Число вариантов выбора равно числу сочетаний из 5 по 3, то есть, 5!/(3!*2! )=10, следовательно, вероятность того, что из 5 деталей будет ровно три бракованных равна 0,0178*10=0,178. Аналогично можно посчитать вероятность того, что будет ровно 2 бракованных, ровно одна и вероятность того, что вообще не будет бракованных, эта вероятность равна (11/17 * 10/16 * 9/15 * 8/14 * 7,13), а потом все четыре вероятности сложить.
ОДЗ x,y>0 возведем оба уравнения в квадрат (2√x-√y)²=3² (√x√y)²=2²
4x-4√x√y+y=9 √x√y=2 по условию задачи xy=4
4x-8+y=9 xy=4
4x+y=17 xy=4 тут можно методом подбора понять что x=4 а y=1
а если метод подбора неубедителен то надо из первого уравнения выразить y через х и подставить во второе уравнение получится квадратное уравнение y=17-4x x(17-4x)=4 17x-4x²=4, 4x²-17x+4=0 , x1-2=(17+-√289-64)/8=(17+-15)/8 x1=4, x2=1/4 y1=17-16=1 y2=17-1=16 1) первое решение x=4, y=1 2) второе решение не подходит так как не обращает в верное равенство первое уравнение, так иногда бывает при возведении в квадрат
Число вариантов выбора равно числу сочетаний из 5 по 3, то есть,
5!/(3!*2! )=10, следовательно, вероятность того, что из 5 деталей будет ровно три бракованных равна 0,0178*10=0,178. Аналогично можно посчитать вероятность того, что будет ровно 2 бракованных, ровно одна и вероятность того, что вообще не будет бракованных, эта вероятность равна (11/17 * 10/16 * 9/15 * 8/14 * 7,13), а потом все четыре вероятности сложить.
возведем оба уравнения в квадрат
(2√x-√y)²=3²
(√x√y)²=2²
4x-4√x√y+y=9 √x√y=2 по условию задачи
xy=4
4x-8+y=9
xy=4
4x+y=17
xy=4
тут можно методом подбора понять что x=4 а y=1
а если метод подбора неубедителен то надо из первого уравнения выразить y через х и подставить во второе уравнение получится квадратное уравнение
y=17-4x
x(17-4x)=4
17x-4x²=4, 4x²-17x+4=0 , x1-2=(17+-√289-64)/8=(17+-15)/8
x1=4, x2=1/4
y1=17-16=1 y2=17-1=16
1) первое решение x=4, y=1
2) второе решение не подходит так как не обращает в верное равенство первое уравнение, так иногда бывает при возведении в квадрат