В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
pvi00o2mailru
pvi00o2mailru
19.03.2022 23:02 •  Математика

Укажите сумму двух натуральных чисел, наименьшое общее кратное которых равно 45, а разность квадратов равна 144

Показать ответ
Ответ:
zoltomon
zoltomon
21.07.2020 06:50
Пусть НОД искомых чисел равен d. Значит сами эти числа имеют вид da и db, где НОД(а,b)=1. Т.к. НОК(da,db)=dab=45, то d может быть только  1,3,5,9,15 или 45. Но с другой стороны d^2(a^2-b^2)=144. Т.е. d^2 должен делить 144, а значит d=5,9,15,45 не подходят. Остается только возможность d=1 или d=3. Если d=1, то может быть a=45, b=1, или a=9, b=5, и оба этих варианта не дадут 144 в разности квадратов. В случае d=3 возможно a=15, b=1, или a=5, b=3. Видим, что 3^2(15^2-1^2)  не равно 144. А вот 3^2(5^2-3^2)=144. Значит d=3, a=5, b=3, т.е. искомые числа равны 15 и 9. Значит их сумма равна 24. ответ: 24.
0,0(0 оценок)
Популярные вопросы: Математика
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота