Приведение к стандартному виду:
\begin{gathered}\displaystyle 2,\!1 \cdot a^2 b^2 c^4 \cdot \bigg ( - 1\frac{3}{7} \bigg ) \cdot bc^3 d = - \bigg ( \frac{21}{10} \cdot \frac{10}{7} \bigg ) \cdot a^2 \cdot b^2b \cdot c^4c^3 \cdot d = = - \frac{21}{7} \cdot a^2 \cdot b^{2+1} \cdot c^{4+3} \cdot d = \boxed {- 3a^2 b^3c ^7d}\end{gathered}2,1⋅a2b2c4⋅(−173)⋅bc3d=−(1021⋅710)⋅a2⋅b2b⋅c4c3⋅d==−721⋅a2⋅b2+1⋅c4+3⋅d=−3a2b3c7d
Коэффициент одночлена: \boxed {-3}−3 .
Задание 2.
Формула для нахождения объема прямоугольного параллелепипеда (VV - объем; xx , yy , zz - измерения прямоугольного параллелепипеда): V=xyzV=xyz .
Значит, объем исходного параллелепипеда равен:
\begin{gathered}V = \Big (4a^2b^5 \Big ) \cdot \Big (3ab^2 \Big ) \cdot \Big (2ab \Big ) = \Big (4 \cdot 3 \cdot 2 \Big ) \cdot a^2aa \cdot b^5b^2b = = 24 \cdot a^{2+1+1} \cdot b^{5+2+1} =\boxed {24a^4b^8}\end{gathered}V=(4a2b5)⋅(3ab2)⋅(2ab)=(4⋅3⋅2)⋅a2aa⋅b5b2b==24⋅a2+1+1⋅b5+2+1=24a4b8
В сантиметрах:
1 см = 10 мм
9 мм = 9 : 10 = 0,9 см
29 мм = 29 : 10 = 2,9 см
31 мм = 31 : 10 = 3,1 см
256 мм = 256 : 10 = 25,6 см
491 мм = 491 : 10 = 49,1 см
12 см 3 мм = 12 + 3 : 10 = 12 + 0,3 = 12,3 см
8 см 5 мм = 8 + 5 : 10 = 8 + 0,5 = 8,5 см
В центнерах:
1 ц = 100 кг
3 ц 24 кг = 3 + 24 : 100 = 3 + 0,24 = 3,24 ц
11 ц 8 кг = 11 + 8 : 100 = 11 + 0,08 = 11,08 ц
5 ц 24 кг = 5 + 24 : 100 = 5 + 0,24 = 5,24 ц
632 кг = 632 : 100 = 6,32 ц
3 750 кг = 3 750 : 100 = 37,5 ц
41 141 кг = 41 141 : 100 = 411,41 ц
В минутах:
1 мин. = 60 с.
2 мин. 33 с. = 2 + 33 : 60 = 2 + 0,55 = 2,55 мин.
5 мин. 42 с. = 5 + 42 : 60 = 5 + 0,7 = 5,7 мин.
9 мин. 54 с. = 9 + 54 : 60 = 9 + 0,9 = 9,9 мин.
Приведение к стандартному виду:
\begin{gathered}\displaystyle 2,\!1 \cdot a^2 b^2 c^4 \cdot \bigg ( - 1\frac{3}{7} \bigg ) \cdot bc^3 d = - \bigg ( \frac{21}{10} \cdot \frac{10}{7} \bigg ) \cdot a^2 \cdot b^2b \cdot c^4c^3 \cdot d = = - \frac{21}{7} \cdot a^2 \cdot b^{2+1} \cdot c^{4+3} \cdot d = \boxed {- 3a^2 b^3c ^7d}\end{gathered}2,1⋅a2b2c4⋅(−173)⋅bc3d=−(1021⋅710)⋅a2⋅b2b⋅c4c3⋅d==−721⋅a2⋅b2+1⋅c4+3⋅d=−3a2b3c7d
Коэффициент одночлена: \boxed {-3}−3 .
Задание 2.
Формула для нахождения объема прямоугольного параллелепипеда (VV - объем; xx , yy , zz - измерения прямоугольного параллелепипеда): V=xyzV=xyz .
Значит, объем исходного параллелепипеда равен:
\begin{gathered}V = \Big (4a^2b^5 \Big ) \cdot \Big (3ab^2 \Big ) \cdot \Big (2ab \Big ) = \Big (4 \cdot 3 \cdot 2 \Big ) \cdot a^2aa \cdot b^5b^2b = = 24 \cdot a^{2+1+1} \cdot b^{5+2+1} =\boxed {24a^4b^8}\end{gathered}V=(4a2b5)⋅(3ab2)⋅(2ab)=(4⋅3⋅2)⋅a2aa⋅b5b2b==24⋅a2+1+1⋅b5+2+1=24a4b8
В сантиметрах:
1 см = 10 мм
9 мм = 9 : 10 = 0,9 см
29 мм = 29 : 10 = 2,9 см
31 мм = 31 : 10 = 3,1 см
256 мм = 256 : 10 = 25,6 см
491 мм = 491 : 10 = 49,1 см
12 см 3 мм = 12 + 3 : 10 = 12 + 0,3 = 12,3 см
8 см 5 мм = 8 + 5 : 10 = 8 + 0,5 = 8,5 см
В центнерах:
1 ц = 100 кг
3 ц 24 кг = 3 + 24 : 100 = 3 + 0,24 = 3,24 ц
11 ц 8 кг = 11 + 8 : 100 = 11 + 0,08 = 11,08 ц
5 ц 24 кг = 5 + 24 : 100 = 5 + 0,24 = 5,24 ц
632 кг = 632 : 100 = 6,32 ц
3 750 кг = 3 750 : 100 = 37,5 ц
41 141 кг = 41 141 : 100 = 411,41 ц
В минутах:
1 мин. = 60 с.
2 мин. 33 с. = 2 + 33 : 60 = 2 + 0,55 = 2,55 мин.
5 мин. 42 с. = 5 + 42 : 60 = 5 + 0,7 = 5,7 мин.
9 мин. 54 с. = 9 + 54 : 60 = 9 + 0,9 = 9,9 мин.