Если есть смешанная дробь, в дробной части которой числитель больше знаменателя (смешанная неправильная дробь), то нужно в этой дробной части числитель разделить на знаменатель нацело, с остатком. Результат от деления (частное) прибавить к целой части исходной дроби - это будет целая часть нового смешанного числа (смешанной правильной дроби). В дробной части нового смешанного числа числителем будет остаток от деления, а знаменателем - частное (знаменатель дробной части исходной смешанной дроби)
Пример 2(7/2) - две целых, семь вторых. Делим 7 на 2, получаем в частном 3 и в остатке 1 (т. к. 2*3 + 1 = 7), прибавляем частное 3 к целой части исходной смешанной дроби 2, получаем 5 - это целая часть нового смешанного числа. В дробной части числителем будет остаток от деления 1, а знаменателем - знаменатель дробной части исходного смешанного числа 2, итого получаем 5(1/2) - пять целых, одна вторая.
Если в дробной части исходного смешанного числа числитель делится на знаменатель без остатка, то у нового смешанного числа дробной части не будет, получится целое число, равное сумме целой части исходного смешанного числа и результата от деления числителя на знаменатель дробной части. Пример: 7(8/4) 8 делим на 4, получаем 2, прибавляем это к целой части исходного смешанного числа, получаем целое число 9.
Дано :
Четырёхугольник ABCD - равнобедренная трапеция (AB║DC, AD = BC).
Окружность с центром О - вписанная в равнобедренную трапецию окружность.
ОМ - радиус окружности = 5 см.
AD = BC = 16 см.
Найти :
S(ABCD) = ?
Если в четырёхугольник можно вписать окружность, то суммы противоположных сторон равны.
Следовательно -
AD + BC = AB + DC.
Но так как -
AD = BC = 16 см.
Поэтому -
AD + BC = 16 см + 16 см = 32 см
AB + DC = 32 см.
Радиус вписанной в трапецию окружности равен половине высоты.
На чертёже НМ - высота ABCD, следовательно -
НМ = 2*ОМ
НМ = 2*5 см
НМ = 10 см.
Площадь трапеции равна произведению полусуммы оснований и высоты.
То есть -
Теперь в формулу подставляем известные нам численные значения и считаем -
ответ : 160 (ед²).
Пример 2(7/2) - две целых, семь вторых. Делим 7 на 2, получаем в частном 3 и в остатке 1 (т. к. 2*3 + 1 = 7), прибавляем частное 3 к целой части исходной смешанной дроби 2, получаем 5 - это целая часть нового смешанного числа. В дробной части числителем будет остаток от деления 1, а знаменателем - знаменатель дробной части исходного смешанного числа 2, итого получаем 5(1/2) - пять целых, одна вторая.
Если в дробной части исходного смешанного числа числитель делится на знаменатель без остатка, то у нового смешанного числа дробной части не будет, получится целое число, равное сумме целой части исходного смешанного числа и результата от деления числителя на знаменатель дробной части. Пример: 7(8/4) 8 делим на 4, получаем 2, прибавляем это к целой части исходного смешанного числа, получаем целое число 9.