Упражнение 2
Дополни предложения.
Пешеход двигается с постоянной скоростью (v). Пройденный путь (s) –
переменная величина, время (t) –
переменная величина.
Периметр квадрата определяется по следующей формуле: P = 4a, где a – сторона квадрата и
переменная величина, а P – периметр и
переменная величина.
Площадь квадрата определяется по следующей формуле: S = a2, где S – площадь квадрата и
переменная величина, а его сторона a –
переменная величина.
Диаметр окружности (D) –
переменная величина, а ее радиус (R) –
переменная величина.
Объем работы (A), выполненной за 3 часа, –
переменная величина, а производительность труда –
переменная величина.
Цена одной тетради –
переменная величина, а стоимость 5 тетрадей –
переменная величина.
для начала нам нужно упростить выражения с y,
\frac{y^2-4y+4}{y^2-4} : \frac{10y-20}{y^2+2y}
y
2
−4
y
2
−4y+4
:
y
2
+2y
10y−20
если ты написал все правильно в условии то мы сможем такое решить: начнем упрощать выражение --->
\begin{gathered}\frac{(y-2)^2}{(y-2)(y+2)}*\frac{y(y+2)}{10(y-2)}\\\end{gathered}
(y−2)(y+2)
(y−2)
2
∗
10(y−2)
y(y+2)
выражения сворачиваем по формулам , квадрат разности и разность квадратов . Пойдем дальше сокращаем
\frac{(y-2)^2*y(y+2)}{(y-2)(y+2)*10(y-2)}=
(y−2)(y+2)∗10(y−2)
(y−2)
2
∗y(y+2)
= \frac{y}{10}-
10
y
− тем самым имеем такое выражение , после подставляем наше значение при y=80y=80 , тем самым имеем что все наше выражение =\frac{80}{10} =0,8=
10
80
=0,8 .
ответ: 0.8
Пошаговое объяснение:
Мода ряда чисел - наиболее часто встречающаяся величина в ряде чисел. Ряд чисел может иметь более одной моды, а может не иметь моды совсем.
Медианой ряда, состоящего из нечетного количества чисел, называется число данного ряда, которое окажется посередине, если этот ряд упорядочить. Медианой ряда, состоящего из четного количества чисел, называется среднее арифметическое двух стоящих посередине чисел этого ряда, если этот ряд упорядочить.
1) 34,8; 63,1; 90,09; 90; 90,9 - всего 5 (нечётное количество) чисел.
В этом ряду чисел повторяющийся членов нет, значит нет моды.
Упорядочим
34,8; 63,1; 90; 90,09; 90,9
Медиана ряда чисел 90.
2) 421; 214; 124; 412; 421; 142 - всего 6 (чётное количество) чисел.
В этом ряду чисел 421 повторяется 2 раза, значит мода 421.
Упорядочим
124; 142; 214; 412; 421; 421
Медиана ряда чисел (214+421):2=635:2=317,5
3) 3; 3; 7; 8; 8; 8; 9; 9; 10; 11; 11; 15; 15; 15 - всего 14 (чётное количество) чисел.
В этом ряду чисел 8 и 15 повторяются по 3 раза, значит мода ряда 8 и 15.
Ряд чисел упорядочен.
Медиана ряда чисел (9+9):2=18:2=9