Упражнения 193. Показать, что функция Р(х) первообразной для функ- ции / на числовой прямой: 1) F(r) f(x)=x'; 2) F(x) - +1, f(x)=x'; 3) F(x) = 3e5, f(x)=="i, 4) F (x) = 1 + sin 2x, f(x) = 2 cos 2x: 5) F(x) = cos 3x - 2, f(x) = -3sin 3x; 6) F(x)=1 - f(x)=ex,
1)Найдем скалярное произведение двух векторов
\overrightarrow{a}\cdot \overrightarrow{b}=3\cdot 4+4\cdot 5+5\cdot(-3)=12+20-15=17
Найдем длины векторов а и b
|\overrightarrow{a}|=\sqrt{3^2+4^2+5^2}=\sqrt{50}=5\sqrt{2}\\ |\overrightarrow{b}|=\sqrt{4^2+5^2+(-3)^2}=\sqrt{50}=5\sqrt{2}
Найдем угол между векторами a и b
\cos\angle(\overrightarrow{a},\overrightarrow{b})=\dfrac{\overrightarrow{a}\cdot \overrightarrow{b}}{|\overrightarrow{a}|\cdot |\overrightarrow{b}|}=\dfrac{17}{5\sqrt{2}\cdot 5\sqrt{2}}=0.34\\ \\ \\ \angle(\overrightarrow{a},\overrightarrow{b})=\arccos0.34
2)
Чтобы "у" был натуральным числом, надо чтобы
Таким образом 2x²/3 должно раскладываться на произведение простых чисел, которые будут в кубе и наименьшими т.к. M - наименьшее, а значит и x,y - наименьшие.
2 уже есть, а "x" - натуральное, поэтому "х" должно быть произведением какого-то числа и 2 т.к. 2·2²=2³, да можно было x=2⁴, тогда 2·2⁸=2⁹, но нас интересует наименьшее. Так же нам надо избавиться от 3 в знаменателе, поэтому "х" должно быть произведением какого-то числа на 3ⁿ, при этом n - наименьшее, значит n=2 т.к. (3²)²:3=3³
Получается x=2·3² и подкоренное выражение 2³·3³, значит "у" будет натуральным.
На всякий случай проверим и найдём M.
Пошаговое объяснение: